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INTRODUCTION
The Great Barrier Reef (GBR) annually attracts approximately 
6.4 million visitors who contribute more than AUS$5 billion 
to the Australian economy, employing more than 63 000 
people (Access Economics 2005). Parts of the GBR are 
open to growing environmental pressure from tourism along 
the Queensland coast. The majority of tourists who visit 
the reef do so by means of large day trip boats travelling to 
specifi c reef sites (Moscardo and Ormsby 2004). Pontoons 
have been moored at a number of reefs to service these day 
boats, reducing impacts due to anchor damage and providing 
economically sustainable use of the reef. There are about 19 
pontoons located on the GBR, mainly in the Cairns section 
of the GBR Marine Park (GBRMP) (Nelson and Mapstone 
1998). Traffic by tourist boats to some reefs averages 
around 1000 trips per year, with each trip bringing 300-600 
passengers. Some reefs receive much lower intensity of 
traffi c, but on a daily basis these boats bring several thousand 
visitors to the reef pontoon system. 

Many of these pontoons are moored at sensitive reef areas 
within the GBRMP and strict controls are placed on tourist 
activities in order to limit human impact. The Great Barrier 
Reef Marine Park Authority (GBRMPA), which manages the 
GBRMP, has implemented various monitoring programs on 
selected reefs with pontoons in order to assess the ecological 
impact of this type of tourist development. These studies 
have shown that fi sh aggregations are enhanced around the 
pontoons because of controlled feeding, and that benthic 
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ABSTRACT
The Great Barrier Reef (GBR) is a resource of immense economic and social benefi t to Australia and one that is highly 
valued by the international community. A number of reefs of the GBR have moored pontoons and frequent boat traffi c to 
service the tourist industry. The aim of the present study was to test whether these human activities are having a measurable 
impact on selected reef environments as caused by anthropogenic contaminants. A recognised method for assessing changes 
in levels of exposure in biota to chemical contaminants released by boating activity is by assessing biological markers. 
Biomarker responses measured included: fl uorescent aromatic compounds (FACs) in bile, changes in enzymatic responses 
(ethoxyresorufi n O-deethylase: EROD and cholinesterase: ChE activities) and two general indices of condition (K and 
HSI) in a resident tropical reef species, coral trout (Plectropomus leopardus). EROD activity in liver was similar for both 
pontoon and non-pontoon (reference) sites suggesting no evidence of exposure to contaminants in coral trout. Similarly, the 
condition factor (K) and hepatosomatic index (HSI) failed to detect any evidence of exposure. However, results of FACs in 
bile suggest low-level exposure to naphthalene and its metabolites at both pontoon and non-pontoon reefs, and ChE activity 
was signifi cantly inhibited in coral trout collected from reefs with pontoons as compared to trout from reefs without pontoons. 
These results raise concern that there may be other contaminants impacting these fi sh caused by exposure to chemicals such 
as antifoulants and further study is warranted to investigate these fi ndings. This study is one of few to undertake assessment 
of biomarkers in fi sh from coral reefs of the GBR, and thus, provides a useful baseline reference for assessment of changes 
in environmental water quality in this part of the GBR.
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community structure can be affected by the presence of 
pontoons (Sweatman 1996). Previous water quality studies 
around reef pontoons were concerned only with nutrients 
and based on these limited data, there was no evidence of 
an impact associated with pontoons (Nelson and Mapstone 
1998). At present, there is no information available on 
environmental levels of anthropogenic contaminants that 
come from boat traffi c around these pontoons or on the effects 
these activities may have on reef biota. 

An established method for assessing changes in levels of 
exposure and potential effects, in biota, from anthropogenic 
contaminants is through using biological markers (e.g. 
biomarkers). Few studies have used biomarkers to assess 
the impact of contaminant exposure in the GBR region. 
Cavanagh et al. (2000) and Codi et al. (2004) investigated 
EROD in fi sh from river systems and estuaries in northern 
Queensland. Klumpp and von Westernhagen (1995) evaluated 
malformations and chromosome aberrations in developing 
fi sh eggs from reefs and coastal waters of the GBR. In both 
of these studies biomarkers were useful in identifying trends 
of increased environmental stress in areas close to human 
impact.

The focus of this study was to assess the potential use of 
fi sh biomarkers as indicators of exposure to bioavailable 
contaminants in the coral reef environment. Biomarkers were 
used to determine if there was a measurable impact of visits 
by tourist boats on the environmental quality of selected 
reefs as caused by anthropogenic contaminants. Petroleum 
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Figure 1. Map of sampling locations on the Great Barrier Reef.
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hydrocarbons released from boat engines (e.g. n-alkanes, 
aliphatic and aromatic hydrocarbons), and antifouling agents 
derived from boat hulls (e.g. biocides and heavy metals), 
were expected to be potential chemical contaminants in this 
environment. The study compared three pontoon-reef systems 
that were known to get annual visits of 1000 tourist vessels 
or more with three reefs zoned “green” by GBRMPA (i.e. 
where all human activity is excluded) that have little or no 
boating activity. We measured fi ve biomarkers of contaminant 
exposure or stress in an important commercial and recreational 
reef species, coral trout (Plectropomus leopardus (Lacepède, 
1802)). These included: (1) analysis of fl uorescent aromatic 
compounds (FACs) in bile; (2) induction response of the 
mixed function oxidation enzyme system by measuring the 
enzymatic activity of ethoxyresorufi n O-deethylase (EROD); 
(3) cholinesterase (ChE), a neuro-transmission enzyme that is 
inhibited by certain toxins such as antifouling chemicals and 
metals; (4) condition factor (K); and (5) hepatosomatic index 
(HSI). This one of the few studies to undertake assessment of 
biomarkers in fi sh from coral reefs of the GBR, so these data 
provide a useful baseline reference for assessment of changes 
in environmental water quality in this part of the GBR.

MATERIALS AND METHODS
Coral trout were selected as the study organism for this study 
as they are a relatively common, large predatory reef fi sh and 
represent an important commercial and recreational fi shery 
on the Great Barrier Reef (Kailola et al. 1993).  They have 
been shown to be relatively sedentary with the majority of 
fi sh remaining on the same reef over a twelve-month period, 
therefore they would be representative of the study area (Kuhl 
1994; Samoilys 1997). Previous work on a closely related 
serranid species, Plectropomus maculatus, has demonstrated 
the suitability of this fi sh for use as a bioindicator organism 
in tropical waters of Australia (Codi King et al. 2005).

Fifteen coral trout were collected in May 2000 from each of 
three pontoon reefs (Moore [16° 52’ S, 146° 12’ E], Agincourt 
[15° 58’ S, 145° 49’ E] and Norman Reefs [16° 25’ S, 145° 59’ 
E]) and three reference or “green zone” reefs (Ruby [15° 44’ 
S, 145° 47’ E], Elford [16° 55’ S, 146° 15’ E] and Endeavour 
[23° 10’ S, 150° 56’ E] Reefs). Locations of these reefs are 
shown in Figure 1. Fish were sacrifi ced as soon as possible 
(on average 100 min after capture) by cervical dislocation, 
and liver and muscle tissue (from just anterior to and below 
the dorsal fi n) were excised immediately and snap-frozen in 
liquid nitrogen for later analysis of EROD induction and ChE 
inhibition, respectively. Bile was also collected from each 
individual fi sh for analysis of fl uorescent aromatic compounds 
(FACs). Fork length, fi sh weight, gut and liver weight were 
recorded for each fi sh.

Bile samples were analysed for two polycyclic aromatic 
hydrocarbons, naphthalene and phenanthrene, and their 
metabolites according to the method outlined in Krahn et al. 
(1984), with some modifi cations for use with tropical reef 
species (Codi King et al. 2005). Separations were performed 
on a GBC liquid chromatograph 1440 system with a 150 X 
4.6 mm Platinum EPS C18 column (100 Å, 5 µm) (Alltech™), 
protected by a 2 cm guard column pre-packed with LC18 

packing (Alltech). Solvent composition changed from 
100% water to 100% acetonitrile linearly over 20 min, at a 
fl ow rate of 1 mL min-1, and then was held for 15 min before 
returning to starting conditions. Bile samples (20 µL) were 
analysed by direct injection into the HPLC and monitored 
using a Varian 9070 fl uorescence detector set at excitation 
and emission wavelength pairs specifi c for naphthalene and 
its metabolites (290 nm/335 nm) and phenanthrene and its 
metabolites (340 nm/380 nm). The detection limit for both 
naphthalene and phenanthrene and their metabolites was 1 
µg g-1.

Microsomes for EROD analysis were prepared from the 
frozen liver. During homogenisation the liver tissue was 
always kept at 4°C. Livers were weighed individually and 
homogenised 1:4 w/v in 0.1 M phosphate buffer (pH 7.4). 
Homogenates were then centrifuged at 20 000 × g for 20 min 
at 4°C. The resulting pellet was discarded and the supernatant 
was centrifuged at 100 000 × g for 60 min at 4°C. The 
supernatant was discarded and the mitochondrial pellet was 
resuspended in 2 mL of 0.1 M phosphate buffer (pH 7.4), 
containing 20% glycerol. Resuspended microsomes were 
stored in liquid nitrogen for subsequent analysis.

EROD activity was determined fl uorospectrophotometrically 
based on the methods of Burke and Mayer (1974) and as 
further described in Kruner and von Westernhagen (1999). 
Reactions were carried out in a 1 cm quartz cuvette in which 
1865 μL of 0.1 M phosphate buffer (pH 7.4), 75 μL of 50 
mM 7-ethoxyresorufi n, 50 μL of sample and 10 μL of 1.0 mM 
NADPH were added. The enzyme kinetics was monitored 
on a Hitachi F-4000 fluorescence spectrophotometer at 
excitation/emission wavelengths of 530/585 nm respectively 
for a period of one minute. The measured fl uorescence 
corresponded to the amount of resorufi n produced by the 
enzymatic reaction. The activity of the sample measured was 
reported as production of resorufi n per minute per mg protein 
(pmole min-1 mg protein-1). 

Protein was determined by the method of Lowry et al. 
(1951). 

Acetylcholinesterase (AChE, E.C.3.1.1.7) and non-specifi c 
butyrylcholinesterase (BChE, E.C.3.1.1.8) are the two forms 
of cholinesterases likely to be present in marine fi sh muscle 
(Sturm et al. 2000). Since we have not distinguished between 
these forms we have used the term “cholinesterase” (ChE) 
throughout this paper. 

Frozen muscle tissue (1.5 to 2.5 g) was homogenised in 
0.02 M phosphate buffer (pH 7.0) containing 0.1% Triton 
X-100. The tissue was homogenised 1:5 w/v for 1 min using 
a Heidolph Diax 900 homogeniser set on 4. The homogenate 
was then centrifuged at 10 000 × g for 20 min at 4°C and 
an aliquot of the supernatant used in the ChE and protein 
assays.

ChE activity was determined spectrophotometrically by the 
method of Ellman et al. (1961) as modifi ed for microplate 
reading by Bocquené and Galgani (1998). To each well of the 
microplate 30 μL of 0.02 M phosphate buffer (pH 7.0), 20 μL 
of dithiobisnitrobenzoic acid (DTNB 0.01 M) and 10 μL of 
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sample were added successively. After 5 min incubations, 10 
μL of acetylthiocholine iodide (ACTC 0.1 M) was added to 
start the reaction. The enzyme kinetics was monitored on a 
microplate reader (Wallac Spectra II) at 405 nm for two min, 
in which time the response was linear. Two types of blanks 
were analysed: 1) blanks in which the sample was omitted, 
and 2) blanks in which the substrate was omitted. Any activity 
due to these blanks was subtracted from the sample activity. 
Enzyme activity is given as the amount of enzyme which 
catalyses the hydrolysis of 1 μmole of acetylcholine per 
minute per mg protein (μmole ACTC min-1 mg protein-1). 

Condition factor (K) was calculated according to Bolger and 
Connolly (1989):

K = Sw/L3   

where Sw was the somatic weight in grams (total weight of the 
fi sh, less gonad and intestines in grams) and L was fi sh length 
in millimetres. Hepatosomatic index (HSI) was calculated 
according to Slooff et al. (1983):

HSI = (Lw/Sw) × 100

where Lw represents the total liver weight in grams and Sw is 
the somatic weight as given above.

Data reported are untransformed means ± standard error. 
Data were checked for homogeneity of variances by means 
of Bartlett’s test, and normality by normal-probability plots. If 
required, data were Log-transformed to meet the assumption 
of homogeneity of variances and normality implicit in 
analysis of variance (Zar 1996). Signifi cant effects due to the 
presence of pontoons on EROD, FACs and ChE activity were 
examined by analysis of covariance (ANCOVA), with sex as 
the covariable. Results were considered to be signifi cantly 
different if p < 0.05. When a signifi cant effect due to the 
presence of pontoons was found, individual comparisons 
were made between the pooled reference sites (there was no 
signifi cant difference between the reference sites) and each 
reef using Dunnett’s test, p < 0.05. Linear regression analyses 
were carried out to test for the effects of handling, fi sh size 
and liver weight on EROD activity and ChE inhibition.

RESULTS AND DISCUSSION
The mean bile metabolite data for naphthalene (expressed 
as naphthalene equivalents) for coral trout collected 
from the non-pontoon (Endeavour, Ruby and Elford) and 
pontoon (Agincourt, Norman, Moore) sites are presented in 
Figure 2a. 

The mean naphthalene value for the three pontoon reefs of 
5.81 ± 4.02 µg g-1 was not signifi cantly higher than the mean 
value of the three non-pontoon reefs of 5.67 ± 3.2 µg g-1. The 
data clearly demonstrate that there is no signifi cant difference 
in exposure between coral trout inhabiting reefs with and 
without pontoons. The mean phenanthrene bile metabolite 
data determined in coral trout from the non- pontoon reefs and 
the pontoon reefs were below detection (< 1 µg g-1). Previous 
studies with Plectropomus maculatus showed differences in 
bile metabolites in response to differences in environmental 
PAH levels (Codi King et al. 2005). In the present study there 
appeared to be low level exposure of coral trout from pontoon 
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Figure 2. Biomarkers in Plectropomus leopardus from pontoon and 
non-pontoon reefs (mean±s.e.). 
(a) FACs, (b) EROD activity and (c) ChE activity 
* represents signifi cantly different from the pooled reference sites. 
(n = 90).

and non-pontoon reefs to naphthalene and its metabolites 
at the time of sampling, which may be indicative of a more 
general source of PAH contamination.

Presence or absence of pontoons on reefs did not have a 
signifi cant effect on the EROD activity in livers of coral 
trout (ANCOVA, F(5,83) = 1.702, p > 0.05; Figure 2b). There 
was also no signifi cant effect due to sex on EROD activity 
(ANCOVA, F(1,83)F(1,83)F  = 0.1677, p > 0.05). Thus from these results 
there is no evidence to suggest that coral trout inhabiting reefs 
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where there is boat traffi c and pontoons are more exposed to 
known contaminant inducers such as petroleum hydrocarbons 
than fi sh from other reefs. This is consistent with the above 
results on PAH metabolites in bile. 

The presence of pontoons, and the associated high levels of 
boat traffi c on reefs had a highly signifi cant effect on the ChE 
activity in coral trout muscle (ANCOVA, F(5,83) = 14.61, p < 
0.002). There was no signifi cant effect of sex of the fi sh on 
ChE activity (ANCOVA, F(1,83)F(1,83)F  = 0.0096, p > 0.05). In general 
those fi sh sampled from reefs with pontoons tended to have 
lower enzyme reaction rates (average 6.86 µmol ACTC min-

1 mg protein-1) than those from non-pontoon reefs (average 
9.36 µmol ACTC min-1 mg protein-1) (Figure 2c). There 
was no signifi cant difference between the three reference 
reefs, so these were pooled and a Dunnett’s test carried 
out where each of the reefs with pontoons was compared 

Fork length (mm)

250 300 350 400 450 500 550 600

0

5

10

15

20

25

Holding time (min)

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

20

25

y = 0.0173x + 7.06 
r2 = 0.0287

y = -0.0115x + 13.376
r2 = 0.032

A.

B.

C
hE

 A
ct

iv
ity

(m
m

ol
/A

C
T

C
 m

in
/m

g 
pr

ot
ei

n)
C

hE
 A

ct
iv

ity
(m

m
ol

/A
C

T
C

 m
in

/m
g 

pr
ot

ei
n)

Figure 4. Variation in ChE activity in Plectropomus leopardus in relation to (a) fi sh size and (b) holding time.

to the reference reefs. The Dunnett’s test showed that both 
Agincourt and Moore Reefs were signifi cantly different to the 
reference reefs. There was no signifi cant difference between 
Norman Reef and the reference sites. ChE is a sensitive and 
specifi c indicator of toxic effects caused by exposure to 
chemicals such as pesticides and other compounds (Davies 
et al. 1994; Payne et al. 1996), some of which are commonly 
used in antifoulants such as copper (Garcia et al. 2000) and 
diuron (Bretaud et al. 2000). These results raise concern 
that activities around the reef pontoons may have resulted 
in contamination of the environment with cholinesterase-
inhibiting chemicals. 

Variables such as fi sh size and sex and handling of samples 
can be a source of error in EROD determinations (Krüner and 
von Westernhagen 1999). In this study there was a signifi cant 
relationship between fork length and EROD activity (R2 = 
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Table 2. Length, weight, liver weight, condition factor (K) and hepatosomatic index (HSI) of Plectropomus leopardus from the six reefs.

Table 1. Effect of the presence of pontoon, with sex as a co-variable, on bile metabolites, EROD activity and ChE activity in Plectropomus 
leopardus.

0.033, F(1,88) = 4.08, p < 0.05; Fig 3a) and between fi sh length 
and ChE activity (R2 = 0.047, F(1,88) = 5.36, p < 0.02; Fig 4a). 
However, the results were not biologically signifi cant as fi sh 
size contributed to only 4 to 5% of the variability in EROD 
and ChE activity. Despite this small effect of fi sh size on both 
ChE and EROD activity, there was no signifi cant difference 
in fi sh size between the six reefs sampled (ANOVA, F(5,84) = 
1.821, p > 0.05; Table 1). Fish sex had no effects on any of 
the biomarker activities (ANCOVA, Table 2). The period the 
fi sh were held alive between the time of capture and sacrifi ce 
(holding time) did not signifi cantly affect EROD activity (R2

= 0.02, F(1,88) = 2.90, p > 0.1; Fig 3c) or ChE activity (R2 = 
0.032, F(1,88) = 3.95, p > 0.05; Fig 4b). Liver weight (R2 = 
0.003, F(1,88) = 0.2726, p > 0.6) had no signifi cant effect on 
EROD activity (Fig 3b). 

Two indices of general condition were investigated in 
coral trout from the six reefs: condition factor (K) and 
hepatosomatic index (HSI) (Table 1). The condition factor 
is based on the length-weight relationship of a fi sh and has 
often been used as an indication of general fi tness of a fi sh 
(Bagenal and Tesch 1978; Bolger and Connolly 1989) and 
has also been used to investigate the effects of contaminants 
(e.g. Laroche et al. 2002; Bervoets and Blust 2003; Pyle et al. 
2005). In this study no signifi cant difference was found in the 
K of fi sh sampled from the six reefs (ANOVA F (5,84)F (5,84)F  = 1.2155, 
p > 0.1). Similarly there was no signifi cant difference in the 
HSI of the fi sh from the six reefs (ANOVA F(5,84) = 0.4232, 
p > 0.7). The HSI is a measure of energetic reserves in the 
liver and metabolic activity and has been shown to increase 
in response to chemical contamination (Slooff et al. 1983). 

This enlargement of the liver is due to either an increase in cell 
size (hypertrophy) or an increase in cell number (hyperplasia) 
(van der Oost et al. 2003). 

CONCLUSIONS
The aim of the study was to test the hypothesis that tourist 
boat traffi c associated with reef pontoons on the GBR was 
having a measurable impact on the reef environment by using 
biological indicators of exposure in coral trout, Plectropomus 
leopardus, a common and economically important reef 
fi sh. Petroleum hydrocarbons released from boat engines 
(e.g. n-alkanes, aliphatic and aromatic hydrocarbons), and 
antifouling agents derived from boat hulls (e.g. biocides 
and heavy metals), were expected to be potential chemical 
contaminants in this environment. 

For the first time sensitive biomarkers of contaminant 
exposure (FACs, EROD, ChE, K and HSI) have been applied 
on coral reefs in GBR waters to evaluate coral trout for effects 
of exposure to hydrocarbons and other chemical contaminants 
derived from tourist boat traffi c and pontoons. Analysis of 
FACs in bile suggests evidence of low-level exposure to 
naphthalene and its metabolites across all reefs, both those 
with pontoons and those without pontoons. EROD activity in 
livers of fi sh shows no evidence that fi sh living near to these 
pontoons are affected by contaminants such as petroleum 
hydrocarbons. Cholinesterase measurements did demonstrate 
that pontoon reef fi sh had signifi cantly lower ChE activity 
as compared with fi sh from non-pontoon reefs and it is 
unclear at this stage the reason for this inhibition. Further 
study is warranted to confi rm and investigate these fi ndings. 
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Finally, the data reported in this study represent important 
ecotoxicological information for the Great Barrier Reef, 
and will provide a useful baseline reference for assessment 
of changes in environmental exposure in this highly valued 
and sensitive ecosystem. 
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