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Executive Summary 
 

The synergistic impacts of nonnative grass invasion and frequent anthropogenic fire 
threaten endangered species and native ecosystems throughout the tropics.  It is generally 
accepted that this results in landscape scale conversion from forest to grassland.  However, there 
is little published data to support this paradigm on a landscape scale on tropical islands, and no 
study has examined changes in fire potential following type conversion in these systems.  If 
nonnative grasslands are more flammable than forests due to changes in fuel loads and 
microclimate, then they are at increased risk of fire occurrence and spread.  Further, current 

predictive fire models do not accurately predict fire ignition or behavior in tropical invasive 
grasslands, largely due to inadequate prediction of fuel moisture, a key driver of wildfire.  The 
objectives of this research were to: (i) compare potential fire behavior in forests vs. grasslands, 
(ii) measure land cover change from 1950-2011 along two grassland/forest ecotones in Hawaii, 
and (iii) investigate the potential for using remotely sensed MODIS imagery to improve in situ  
estimates of fuel moisture. To address these objectives, we quantified fuel loads and moistures in 
nonnative forest and grassland (Megathyrsus maximus) plots (n=6), and used these field data to 
model potential fire behavior using the BehavePlus fire modeling program.  Rate and extent of 
land cover change were quantified from 1950-2011 with historical imagery. Finally, we 
developed empirical models to predict real-time fuel moisture content in nonnative tropical 
grasslands dominated by Megathyrsus maximus from Terra-MODIS NDVI and EVI2 vegetation 
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indices.   
Live and dead fuel moisture content and fine fuel loads did not differ between forests and 

grasslands, but mean surface fuel height was 31% lower in forests (72 cm) than grasslands (105 
cm; P<0.02).  As a result of differences in fuel height, predicted fire behavior differed greatly in 
forests vs. grasslands. Rates of spread were 3-5 times higher in grasslands (5.0-36.3 m min-1) 
than forests (0-10.5 m min-1) (P<0.001), and flame lengths were 2-3 times higher in grasslands 
(2.8-10.0 m) than forests (0-4.3 m) (P<0.01).  Between 1950 and 2011, invasive grassland cover 
increased in heavily utilized areas at both Makua (320 ha) and Schofield (745 ha) at rates of 2.62 
and 1.83 ha yr-1, respectively, with more rapid rates of conversion before active fire management 
practices were implemented in the early 1990’s.  MODIS-based models predicted live fuel 
moisture moderately well (R2= 0.46), and outperformed the currently used National Fire Danger 
Rating System (R2= 0.37) and the Keetch-Byram Drought Index (R2= 0.06).  Dead fuel moisture 
prediction with MODIS imagery was less robust, and was best predicted by a model including 
EVI2 and NDVI (R2= 0.19).  These results support current paradigms for the tropics, and 
demonstrate that the type conversion associated with nonnative grass invasion and subsequent 
fire occurs on large, landscape scales. Moreover, once forests are converted to grassland there is 
a significant increase in fire intensity which likely provides a positive feedback to continued 
grassland dominance in the absence of active fire management. Real time, accurate fuel moisture 
prediction with regular and readily available satellite imagery in nonnative grasslands will 
greatly improve management of fire in Hawaii, as well as other tropical ecosystems dominated 
by nonnative grasses. This research was funded by the DoD Legacy Program. 
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Background and purpose  
 
 Highly flammable African pasture grasses have been widely introduced throughout the 
tropics where they are now problematic invaders (D'Antonio and Vitousek, 1992; Williams and 
Baruch, 2000).  In addition to impacting fire regimes, these invasive grasses commonly 
outcompete native plants for above- and belowground resources (Ammondt and Litton, 2012; 
Ammondt et al., 2012), and alter carbon storage and forest structure (Litton et al., 2006) and 
nutrient dynamics (Asner and Beatty, 1996; Mack et al., 2001).  These highly competitive 
grasses typically form a continuous layer of fine fuels, even under a forest canopy (LaRosa et al., 
2008), thereby increasing the potential for future fire and type conversion to nonnative grassland.  
Once a fire does inevitably occur, the postfire plant community is typically characterized by 
rapid nonnative grass regeneration, which then predisposes these ecosystems to more frequent 
and higher intensity fires as a result of increased fine fuel loads and changes in microclimate 
(Smith and Tunison, 1992; Pyne et al., 1996; Blackmore and Vitousek, 2000; LaRosa et al., 
2008; Ainsworth and Kauffman, 2010).  This cycle of nonnative grass invasion, fire, and grass 
reinvasion is a common occurrence in tropical ecosystems that leads to large scale land cover 
change (D'Antonio and Vitousek, 1992). 
 Plot level studies provide important insights into the relationships between nonnative 
grass invasion, fire, and type conversion from forest to grassland, but a greater understanding of 
these dynamics is only possible by examining these processes at the landscape scale (Brook and 
Bowman, 2006; Levick and Rogers, 2011).  Furthermore, an understanding of the spatio-
temporal dynamics of vegetation change over longer time scales can better elucidate the 
mechanisms driving vegetation change.  Because the invasive grass–wildfire cycle has been so 
well documented at the plot scale, the dominant paradigm on tropical islands is that fire shifts 
composition from woody communities to nonnative grassland, that these changes persist over 
long time periods, and that the end result is a landscape that is increasingly dominated by 
nonnative invasive grasses that have a much higher fire risk than the forests that they replaced.  
However, few studies in the tropics have looked at landscape vegetation cover patterns resulting 
from repeated fire and grass invasion at larger scales (Blackmore and Vitousek, 2000; Grigulis et 
al., 2005). 

Fire modeling programs such as BehavePlus (Andrews et al., 2005) and the National Fire 
Danger Rating System (NFDRS, (Schlobohm and Brain, 2002) were developed to simulate fire 
potential and behavior and to assist in predicting fire danger ratings, thereby providing fire 
managers with a suite of decision-making tools.  The predictive capability of these models, 
however, depends largely on the accuracy of input variables such as fuel loads and fuel moisture, 
along with a suite of microclimate variables, all of which change rapidly over short temporal 
scales (Ellsworth et al, in press).  The field method most commonly used for quantifying fuel 
moisture, a critical driver of fire occurrence and behavior, is to simply measure the proportion of 
fresh weight:dry weight of a number of samples collected from the site of interest.  However, this 
method is time and labor intensive, and provides fuel moisture for only a snapshot in time.  It 
would be useful for fire behavior prediction if fuel moisture for guinea grass could be estimated 
using remotely-sensed data, as has been done elsewhere for other vegetation types (Chuvieco et 
al., 2002; Caccamo et al., 2011).   

Current tools used to predict live and dead fuel moisture on the mainland United States 
have not been widely tested in Hawaii against in situ fuel moisture data (Beavers, 2001), and it is 
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unclear whether they accurately predict fuel moisture, and thus potential for fire.  The National 
Fire Danger Rating System (NFDRS) is most commonly used by agencies in Hawaii as a tool to 
assess the potential for ignition, spread and difficulty of control.  This index is based on the 
relationships between on-site fuels, weather, and topography and is calculated for each station 
within the Remote Automated Weather Station (RAWS) network (Schlobohm and Brain, 2002).  
Live and dead (1-hr) fuel moistures, in turn, are calculated as intermediates in the NFDRS and 
can also be obtained for any weather station in the network.  The Keetch-Byram drought index 
(KDBI) is a meteorological index designed for predicting fire potential, and is based on the 
cumulative moisture deficiency in the upper layers of the soil profile (Keetch and Byram, 1968).  
While used widely for fire potential prediction, KBDI has been shown to be a poor to moderate 
predictor of fuel moisture content (Dimitrakopoulos and Bemmerzouk, 2003; Pellizzaro et al., 
2007; Caccamo et al., 2011).  KBDI is used more informally in Hawaii to assess longer term 
drying trends (A. Beavers, personal communication), typically in conjunction with the NFDRS.   

The objectives of this study were to: (i) use field data and modeling to compare fuels and 
potential fire behavior in adjacent forests vs. grasslands, (ii) measure the rate and extent of land 
cover change at the grassland-forest boundary from 1950-2011 in and around two heavily 
utilized military installations on Oahu, Hawaii, and (iii) evaluate the use of vegetation indices 
derived from remotely sensed MODIS data to accurately predict live and dead fuel moistures in 
guinea grass dominated vegetation on leeward Oahu.  We hypothesized that (i) fine fuel loads 
and heights would be lower and fuel moisture higher in forest plots than grass plots due to 
differences in understory microclimate (Hoffmann et al., 2002) and shading (Funk and 
McDaniel, 2010); (ii) as a result of lower fuel heights and fuel loads, modeled fire behavior 
would be less severe (i.e. lower rates of spread, fireline intensity, flame lengths, and probability 
of ignition) in forest plots than grass plots (Freifelder et al., 1998); (iii) rates of conversion from 
forest to grassland would increase through time over the past 50+ years due to increased ignition 
sources, and rates of conversion would be higher in areas where there was already a large grass 
component than in adjacent forests (Beavers, 2001); (iv) because vegetation indices are a good 
indicator of vegetation greenness, there will be strong relationships between vegetation indices 
derived from MODIS imagery and in situ live fuel moisture content; (v) because live and dead 
fuel moisture are closely correlated, we also expect moderate relationships between vegetation 
indices and dead fuel moisture content; (vi) because EVI performs well in areas of high biomass 
(Jensen, 2007), it will be a stronger predictor of fuel moisture than other vegetation indices given 
the dense grass cover present on our study sites; and (vii) daily MODIS data will show stronger 
predictive relationships with in situ fuel moisture than 8-day or 16-day composites, as fuel 
moisture can change rapidly within a site over a short time period, particularly following 
precipitation events (Ellsworth et al, in press). 
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Study description and location  
 
Fuel Quantification 

Fuel loads in guinea grass-dominated open grassland (grass sites) and adjacent nonnative 
forest (forest sites) were quantified in the summer of 2008 in the Waianae Kai Forest Reserve 
(forest: 367 m a.s.l.; MAP [mean annual precipitation], 1399 mm; MAT [mean annual 
temperature], 20ºC) (grass: 193 m.a.s.l.; MAP, 1134 mm; MAT, 23ºC) and Dillingham Airfield 
(forest and grass: 4 m a.s.l.; MAP, 900 mm; MAT, 24ºC; T. Giambelluca, unpub. data) on the 
Waianae Coast and North Shore areas, respectively, on the Island of Oahu, Hawaii, U.S.A.  All 
sites are dominated by guinea grass in the understory.  Forest sites at Waianae Kai Forest 
Reserve are dominated by nonnative trees, including Leucaena leucocephala (Lam.) De wit in 
the subcanopy and kiawe (Prosopis pallida) and silk oak (Grevillea robusta) in the overstory.  
Forest sites at Dillingham Airfield have dense nonnative L. leucocephala in the canopy, with 
infrequent other nonnative woody species scattered throughout.  Soils at Dillingham Airfield are 
in the Lualualei series (fine, smectitic, isohyperthermic Typic Gypsitorrerts) formed in alluvium 
and colluvium from basalt and volcanic ash.  Soils at Waianae Kai are in the Ewa series (fine, 
kaolinitic, isohyperthermic Aridic Haplustolls) formed in alluvium weathered from basaltic rock.   

Within each of the two sites, three grassland and three forest plots were selected using 
USGS imagery in Google Earth 5.0. Plot selection was based on continuous grass cover and 
limited overstory trees for grassland plots, and a continuous tree overstory with guinea grass in 
the understory for forest plots. Final plot selection was made randomly from all possible 
locations that met these criteria.   In each site, the following fuel variables were measured: (i) 
total fuel loads (standing live and dead, and litter), (ii) fuel composition (live grass, dead grass, 
shrubs, standing trees, downed wood), (iii) mean fuel height (calculated as 70% of maximum 
observed surface fuel height in each plot (Burgan and Rothermel, 1984)) and (iv) live and dead 
fine fuel moisture.  In each plot, three parallel 50m transects were established 25m apart, and all 
herbaceous fuel was destructively harvested in six 25 x 50 cm sub-plots at fixed locations along 
each transect (n=18/plot).  This sampling design adequately captured the spatial variability in 
fuels at a given site (Ellsworth et al, in press). Samples were immediately placed into sealed 
plastic bags to retain moisture.  Within 6 hours of field collection, all samples were separated 
into categories (live grass, standing dead grass, surface litter, and downed wood), weighed, dried 
in a forced air oven at 70oC to a constant mass (minimum 48 hours), and reweighed to determine 
dry mass and moisture content relative to oven dry weight.   

Live standing trees and standing and downed dead wood were also quantified in each 
forest plot.  The diameter at breast height (dbh) of all L. leucocephala trees– the dominant 
species in all forest plots – in a single 1 x 50 m belt transects was measured in each forest plot.  
Live tree biomass was determined using an existing species-specific allometric equation for L. 
leucocephala  (Dudley and Fownes, 1992). The utility of this allometry for estimating biomass in 
trees from the Waianae Kai field site was explored by harvesting trees across the widest possible 
range of sizes found (n=20, dbh ranging from 1.5 to 6.2 cm dbh) and comparing observed vs. 
predicted biomass.  There was a strong correlation between predicted and observed biomass (r2= 
0.95), indicating that the existing equation accurately estimates L. leucocephala biomass in our 
study sites.  While other woody species occurred in the general study area, none were 
encountered in any of the sampling transects.  Coarse downed woody fuels were sampled along 
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three 50 m transects/plot using a planar intercept technique (Van Wagner, 1968; Brown, 1974).  
In addition, the height of the tallest blade of grass was measured in each subplot before clipping, 
and mean fine fuel height was recorded as 70% of the average maximum height across subplots 
(Burgan and Rothermel, 1984). 
 
Fire Modeling 

The fuels data described above were used to parameterize the BehavePlus 5 Fire 
Modeling System (Andrews et al., 2005) to predict fire behavior for each plot.  Live and dead 
fuel heat contents were measured by bomb calorimetry (Hazen Research, Inc., Golden, CO, 
USA).  Previously published values of dead fuel moisture of extinction for guinea grass 
(Beavers, 2001) and woody surface area to volume ratio for humid tropical grasslands (Scott and 
Burgan, 2005) were used.  Surface area to volume ratios for both live and dead fuels were 
measured on guinea grass individuals from Dillingham Airfield and Waianae Kai Forest Reserve 
(n=20 overall using a LI-3100C Leaf Area Meter (LI-COR Environmental, Lincoln, Nebraska) 
and water displacement. After examining wind speed data collected at the field sites, we selected 
an average 20-foot windspeed (15 km hr-1) and an extreme 20-foot windspeed (30 km hr-1) to 
simulate moderate and severe wind scenarios that were then applied to all sites.  Wind 
adjustment factors of 0.4 and 0.3 were used for grass and forest plots, respectively, to adjust the 
windspeed collected by the RAWS weather stations (20-foot wind speed) to that at the vegetation 
height (surface wind speed) (Andrews et al., 2005).  Output variables of interest from the fire 
behavior model included: maximum rate of spread (ROS; m min-1), fireline intensity (kW m-1), 
flame length (m), and probability of ignition (%).  
 
Historical and Spatial Land Cover Change Analysis 
 Land cover classifications were made on orthorectified aerial photographs and high 
resolution multispectral Worldview-2 imagery for Makua Military Reservation (108 m.a.s.l.; 
MAP, 864 mm; MAT, 23ºC) and Schofield Barracks (297 m.a.s.l.; MAP, 1000 mm; MAT, 22ºC; 
(Giambelluca et al., 2011); Figure 1).  Classified maps for Makua were derived from images for 
five time periods: 1962, 1977, 1993, and 2004 aerial photographs, and 2010 Worldview-2 
scenes.  Schofield land cover maps were created for six time periods: 1950, 1962, 1977, 1992, 
and 2004 aerial photographs, and 2011 Worldview 2 scenes.  The 2004 images for Makua and 
Schofield were high resolution (0.3 m) USGS registered images with a positional accuracy that 
did not exceed 2.12 m RMSE (root mean square error).  The other images were registered to the 
2004 images with a first-order polynomial warping (affine transformation) to achieve an average 
RMSE of 3.37 m and a maximum RMSE of 9.84 m. Worldview-2 images are high resolution 
(~0.5 m) with a positional accuracy of 12.2 m at the CE90 level.   
 Both Makua and Schofield site boundaries were digitized into polygon vector shapefiles 
using ArcGIS Desktop Version 9.3.1 (ESRI, Redlands, California, USA).  Each site was divided 
into two areas of interest (AOI): a grassland area within the fire break which is heavily utilized 
for military training activities and a forested area outside the fire break, where little military 
activity occurs.  While these areas were defined as grassland vs. forest, respectively, each 
contains patches of both grass and woody cover as well as patches of more intensive utilization 
(i.e. developed military training areas).  The ArcGIS Data Management tool Create Fishnet was 
used to divide the study sites into grids with a 50 x 50 m cell size and clip the grids to the site 
boundaries.  After the grids were created, they were overlaid onto the images for classification.   
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 Each cell was classified into one of seven cover classes at Makua:  Grass, shrub, forest, 
bare, developed, military training area (MTA; highly disturbed area with minimal vegetative 
cover), and shadow/cloud (treated as No Data).  The woody plant composition at Schofield is 
highly variable and forest and shrub cover classes are often indistinguishable from aerial images.  
At Schofield, therefore, shrub and forest cover classes were combined into a single mixed woody 
cover class, resulting in only six cover classes for this site (grass, woody, bare ground, 
developed, MTA, and No Data).  The total area of each cover class was calculated for every time 
period within the two AOIs for both sites.  Amounts and rates of land cover change (expressed as 
average hectares per year) were then extrapolated for each of the four AOIs over each time 
period.   

 
In situ fuel moisture data collection 

Bi-weekly in situ fuel moisture samples were collected from October 2009-October 2010 
in guinea grass dominated ecosystems at Schofield Barracks, Yokohama State Park, and 
Dillingham Ranch on the Island of Oahu, Hawaii.  All sites are dominated by guinea grass with 
some invasive Leucaena leucocephala (Lam.) De wit in the overstory.  Yokohama (7 m.a.s.l.; 
MAP = 857 mm; MAT = 24ºC), soils are in the Lualualei series, (fine, smectitic, 
isohyperthermic Typic Gypsitorrerts) formed in alluvium and colluvium from basalt and 
volcanic ash. Schofield Barracks and Dillingham Ranch sites are discussed above. 

On the first sampling date in October 2009, a single 50m transect was established in each 
site.  Starting at the 0m mark of each transect, biomass of all herbaceous plant materials 
occurring in a 25x50 cm plot was clipped at the soil surface every 10m along the transects 
(n=6/transect).  Samples were taken back to the laboratory and separated into the following 
categories:  live herbaceous vegetation, dead herbaceous vegetation and surface litter.  Samples 
were then weighed, dried in a forced air oven at 70oC to a constant mass, and re-weighed.   Fuel 
moisture was the calculated as the ratio of the weight of water to the dry weight of the plant 
material, expressed as a percentage. Subsequent weeks’ sampling occurred on parallel transects, 
with each biweekly sampling offset from the prior sampling transect by 1 m.   
 
MODIS data acquisition and processing 

MODIS data products were acquired from the NASA Earth Observing System Data and 
Information System (http://reverb.echo.nasa.gov/reverb/) for all dates corresponding to in situ 
sampling.  The datasets used in our analyses included the following: Surface Reflectance Daily 
L2G Global 250m (MOD09GQ), Surface Reflectance Daily L2G Global 1km and 500m 
(MOD09GA), Surface Reflectance 8-day Global L3 Global 250m (MOD09Q1), Surface 
Reflectance 8-day L3 Global 500m (MOD09A1), and Vegetation Indices 16-day L3 Global 
250m (MOD13Q1).  Each data product was available in the sinusoidal projection.  We used the 
MODIS Reprojection Tool (NASA Land Processes Distributed Active Archive Center [LP 
DAAC], USGS/Earth Resources Observation and Science [EROS] Center, Sioux Falls, South 
Dakota) to project the data into the Universal Transverse Mercator projection zone 4 on the 
North American Datum 1983.  ENVI 4.5 (Exelis Visual Information Solutions, Boulder, 
Colorado) was used to reformat the data into a multi-date image cube and create a temporal 
profile of reflectances for each band at each study site location.   
 
Vegetation indices 
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Vegetation indices of interest – including NDVI, EVI, EVI2, VARI, NDWI, NDII, 
RGRE, and an integral calculation (Chuvieco et al., 2002) – were calculated separately for daily 
and 8-day reflectance values for the entire one year study period.  16-day NDVI and EVI 
vegetation index products were also obtained, as well as reflectance values for bands 1-3.  
MODIS 16-day composite data omits bands 4-7, allowing calculations of only a subset of the 
vegetation indices (EVI2 and RGRE) for this temporal resolution.  

 
NFDRS fuel moisture and KDBI 
 KDBI values and NFDRS (1978 system) calculations for live and dead fuel moisture for 
each in situ sampling date were retrieved on June 14, 2012 from the Weather Information 
Management System (WIMS), which is maintained by the National Wildland Coordinating 
Group (https://fam.nwcg.gov/wims/jsp/wims.htm).  Weather data used in WIMS calculations 
was measured near each field site using the RAWS network (WIMS tower ID #’s 490308, 
490301, and 499902 were used for Dillingham, Yokohama, and Schofield sites, respectively).   
 
Statistical Analyses 

General linear models were used to determine whether there were differences in live and 
dead fine fuel loads, fine fuel moistures, average fuel height, fire behavior variables (ROS, 
fireline intensity, flame length) and probability of ignition between grassland and forest plots, 
after controlling for differences in mean annual precipitation (MAP) among sampled plots.  
Because there is an elevation/ precipitation gradient at Waianae Kai Forest Reserve, and forest 
plots were clustered ~150 m higher in elevation than grassland plots, MAP was included in the 
model to control for differences in environmental variables that may have potentially impacted 
fuels and fire behavior.  Site was treated as a random factor, plot type (forest or grassland) was 
treated as a fixed factor, and MAP was used as a covariate.  Live and dead fine fuel variables 
were log-transformed for analysis to meet model assumptions of normality and homogeneity of 
variance, but all results are presented herein as untransformed data.  Minitab v. 15 (Minitab, Inc., 
State College, PA) was used for all statistical analyses, and significance was assessed at α=0.05.  
For Fragstats spatial analyses, AOI’s within sites are not independent, and only two sites were 
analyzed, making statistical inference inappropriate.  Therefore, this analysis was limited to an 
examination of temporal trends in patterns.   

Pearson correlation coefficients were calculated with all sites pooled to describe the 
strength of the relationship between each daily, 8-day, and 16-day vegetation index with live, 
dead, and litter fuel moisture.  Because WIMS calculations and fire prediction tools (i.e. 
BehavePlus) do not separate standing dead and surface litter fuel components, measurements for 
dead fuel moisture were weighted by the proportion of the two dead fuel components and 
examined in all analyses as a single variable.  All significant correlations were further examined 
individually and in combination using general linear regression models to identify the strongest 
MODIS-based predictor variable(s) for in situ live and dead fuel moisture for each temporal 
scale (daily, 8-day, and 16-day).  Similarly, the ability of WIMS-calculated KBDI and fuel 
moisture (live and dead) to predict in situ fuel moisture was examined using general linear 
models.  Finally, the best predictor variables for both MODIS-based and WIMS-based were 
evaluated in hybrid models to determine the strongest predictive relationships between all 
available fuel moisture predictors and in situ measured live and dead fuel moisture at each 
temporal scale.  We were most interested in a general model that accurately predicts live and 
dead fuel moisture across all guinea grass ecosystems on leeward Oahu, Hawaii.  However, 

https://fam.nwcg.gov/wims/jsp/wims.htm
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because these nonnative, invasive guinea grass ecosystems are high fire risk areas, we also 
evaluated the inclusion of a site term in the best predictor model to test whether there was greater 
capacity to accurately predict fuel moisture at a single site than across the larger area of interest.   
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Key findings  
 
Fuel Quantification 

After controlling for differences in MAP (P<0.01), there were few differences in fine 
fuels between forest and grassland plots, with live fine fuels ranging from 2.1-5.9 Mg ha-1 
(P=0.86), and dead fine fuels ranging from 10.4-19.5 Mg ha-1 (P=0.89; Table 1).  MAP was a 
strong predictor of both live (P=0.02) and dead (P=0.05) fuel moisture, and there was no 
evidence of differences in fuel moistures between forest and grassland (live, P=0.19; dead, 
P=0.95).  Live fine fuel moisture at the time of sampling ranged from 47-173%, and dead fine 
fuel moisture from 14-65%.  Mean fuel height, however, was 31% lower in forests (72 cm) 
than in grasslands (105 cm; P<0.02) (Table1). 
 
Fire Modeling 

Despite holding microclimate constant and fuels only differing between forest and 
grassland in terms of height, predicted fire behavior differed greatly between these two land 
cover types (Table 2).  Under moderate wind conditions (15 kph), rate of modeled fire spread 
was 3-5x higher in grassland (5.0-17.7 m min-1) than forest (0-5.0 m min-1) (P<0.001), and 
flame lengths were 2-3x higher in grassland (2.8-7.2 m) than forest (0-3.0 m; P<0.01).  Fireline 
intensity at moderate wind conditions was also higher in grassland (2,426-19,034 kW m-1) than 
forest (0-2,914 kW m-1) (P<0.01).  Under extreme wind conditions (30 kph), predicted rates of 
spread were 3-10x higher in grasslands (10.1-36.3 m min-1) than in forests (0-10.5 m min-1) 
(P<0.001); flame lengths were 2.5-4x higher in grasslands (3.9-10.0 m) than forests (0-4.3m) 
(P<0.01); and fireline intensity was higher in grasslands (4,919-39,004 kW m-1) than in forests 
(0-6,166 kW m-1) (P<0.01).  Probability of ignition ranged from 0-32% and did not differ 
between cover types under either moderate or extreme wind conditions (P=0.27) (Table 2).   
 
Historical and Spatial Land Cover Change Analysis 

Invasive grassland cover increased in heavily utilized areas inside the firebreak at 
both Makua (total area of 320 ha) and Schofield (total area of 745 ha) at rates of 2.62 and 1.83 ha 
yr-1, respectively, over the entire 50+ years examined, with more rapid rates of conversion (up to 
7.41 ha yr-1) occurring before aggressive fire management practices were implemented in the 
early 1990’s (Table 3; Figures 1-2).  At Makua, conversion from forest to grassland in the 
surrounding forest area (total area of 1244 ha) was slower (1.78 ha yr-1) than in the grass area 
(Figure 1). Unlike Makua, in the forest area at Schofield (total area of 1576 ha) conversion of 
grassland to forest occurred at a faster rate (4.75 ha yr-1) than in grass areas (Figure 2).  Overall, 
change in land cover over time was more dynamic at Makua (Figure 1) than at Schofield (Figure 
2), coinciding with large and frequent fires at Makua, and fewer acres burned at Schofield.   
   
In situ fuel moisture  

Live and dead fuel moistures were dynamic throughout the sampling period, ranging 
from 45 to 294% and 6 to 49%, respectively, and sometimes changing rapidly between biweekly 
sampling dates.  Schofield, which had the highest MAP, generally had the highest live and dead 
fuel moisture of all sites, and live fuel moisture at this site never dropped below 122%.  In 
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contrast, the Dillingham and Yokohama sites, which are located at lower elevations and lower 
MAP, had frequent periods where live fuel moisture dropped well below 100%.  Seasonal 
patterns were similar across all sites, with highest fuel moistures in the winter months, and 
periods of low fuel moisture in the drier summer and fall months (Figure 3).   
 
MODIS-based fuel moisture correlations 

Vegetation indices calculated from daily MODIS data were also dynamic (Figure 3) and 
none were correlated with live, dead, or litter fuel moisture (Table 4; Figure 3), except daily EVI 
values, which were positively and linearly correlated with live fuel moisture (r = 0.338; 
P=0.001).  Vegetation indices calculated from 8 day composite MODIS data had somewhat 
clearer seasonal patterns (Figure 4) and stronger relationships with in situ fuel moisture 
measurements, with EVI, NDVI, and EVI2 all showing significant relationships with live, dead, 
and litter fuel moisture (P<0.01; Table 4).  EVI had the strongest relationship with live fuel 
moisture (r = 0.399; P<0.001), while EVI2 had a stronger relationship with dead fuel moisture 
components (r = 0.379; P<0.001 for standing dead, and r = 0.380; P<0.001 for litter fuel 
moisture).  16-day composite MODIS vegetation index products were positively and linearly 
correlated with live, dead, and litter fuel moisture (Table 4; Figure 4).  NDVI had the strongest 
relationship with live fuel moisture (r = 0.462; P<0.001), and EVI2 had stronger correlations 
with standing dead (r = 0.450; P<0.001) and litter (r = 0.374; P<0.001) fuel moisture. 
 
MODIS-based fuel moisture models 

Empirical models were derived from the MODIS-based vegetation indices (EVI, EVI2, 
and NDVI) that were most strongly correlated with fuel moisture at each temporal scale (Table 
1; daily, 8-day, 16-day).  Each vegetation index was analyzed alone and in all possible 
combinations to determine the strongest predictive relationships.  Using daily vegetation index 
data, EVI alone had the strongest linear relationship with live fuel moisture (R2 = 0.15; p<0.001; 
Table 5), but no predictive power (R2

pred = 0.00), and no relationship with dead fuel moisture (R2 
= 0.00; R2

pred = 0.00; p=0.082; Table 6).  No other daily VI’s alone or in combination generated 
models that accurately predicted dead fuel moisture.  The best relationships using 8-day 
composite data for both live (R2 = 0.20; R2

pred = 0.15;  p<0.001; Table 2) and dead (R2 = 0.14; 
R2

pred = 0.06; p=0.001) fuel moisture contained both EVI and NDVI.  16-day composite indices 
had the strongest relationships with both live and dead fuel moisture of all MODIS-based models 
examined.  Best MODIS-based predictive models for both live (R2 = 0.46; R2

pred = 0.40; 
p<0.001; Table 5) and dead fuel moisture (R2 = 0.19; R2

pred = 0.12; p=0.002; Table 6) 
included EVI2 and NDVI. 
 WIMS-based algorithms, which are currently used in fire planning and 
management in Hawaii, were poor predictors of in situ fuel moisture measurements 
compared with MODIS-based models.  NFDRS predictions of live fuel moisture had slightly 
weaker relationships with in situ measurements (R2 = 0.37; R2

pred = 0.33; p<0.001; Figure 5) than 
MODIS-derived predictions (Table 5).   There was no relationship between NFDRS predicted 
and in situ dead fuel moisture (R2 = 0.05; R2

pred = 0.00; p=0.066; Table 6; Figure 4).  KDBI was 
an even poorer predictor of both live (R2 = 0.06; R2

pred = 0.01; p=0.050; Table 5) and dead (R2 = 
0.01; R2

pred = 0.00; p=0.477) fuel moisture (Table 6).     
 Hybrid models (containing both MODIS and WIMS components) were generally 
stronger predictors of in situ fuel moisture than either MODIS or WIMS models alone (Table 5).  
The strongest overall predictor of live fuel moisture used 8 day MODIS EVI as well as 



14 
 

NFDRS and KBDI data (R2 = 0.49; R2
pred = 0.41; p<0.001; Figure 7), which represents only a 

slight improvement over the MODIS-only model. Hybrid models for dead fuel moisture (R2
pred = 

0.00 for all models) did not offer improvements over the best MODIS-only model (Table 6; 
Figure 8).   
 All models presented above are generalized across all study sites, but in some cases a site 
specific model yielded stronger relationships with in situ fuel moisture.  When a site factor was 
added to the best MODIS-based model (16 day composite VI), additional variability was 
explained by the model (R2 = 0.61; R2

pred = 0.59; p<0.001), adding considerable predictive 
power.  Similarly, adding a site factor to the NFDRS model for live fuel moisture prediction 
improved model fit (R2 = 0.42; R2

pred = 0.39; p<0.001).  Dead fuel moisture models were not 
improved by the inclusion of a site factor.   
 

Management implications  
 
1.  While type conversion from forest to grassland has occurred, active fire management can 
offset, and even reverse this trend. 

 These results clearly show that the areas studied have experienced large type conversions 
from forest to grassland over the past 50+ years. This conversion to grasslands, in turn, altered 
fuel heights and increased modeled fire spread and intensity, which likely represents a positive 
feedback to grassland dominance (i.e., the invasive grass-wildfire cycle).  On a landscape scale, 
however, the interactions among fire, grass invasion, nonnative woody species and fire 
management appear to be much more complex.  Because it is generally accepted that repeated 
fires and the presence of nonnative grasses lead to a landscape that is increasingly dominated by 
flammable grasslands, we expected to see an increase in the rate and extent of conversion in 
more recent years as compared to historical landscapes.  While we acknowledge that the two 
valleys analyzed in this study do not mirror all landscapes in the tropics, they do represent 
among the most highly impacted end of the spectrum in terms of utilization intensity and 
opportunities for fire ignition (i.e., frequent military training activities).  Because of this, we 
expected to see rapid rates of land cover conversion.  The mean trend over time in grassland 
areas at both sites was a reduction in woody cover with a concomitant increase in grassland 
cover, as originally hypothesized.  This was expected, as these areas are heavily utilized by 
military training activities, and ignitions from training are frequent.  In the forests, however, 
there were different trends observed over time.  At Makua, where fires have been larger and 
more frequent, the forest is slowly being replaced by grassland.  Fire management has been 
exceedingly difficult at this site (Beavers et al., 1999) due to low precipitation and fuel moisture, 
remoteness, intensity of military training, and common anthropogenic ignitions (i.e. arson, 
roadside).  In 2004, all live fire training stopped at Makua to address fire concerns at this site, but 
several human ignited fires have since occurred.   

At Schofield, however, the pattern of change over time in the forest was very different 
from Makua.  Grass cover steadily decreased from 1950 to the present, while woody species, and 
to a lesser extent, military training areas, increased.  While this area is inaccessible due to 
unexploded ordinance, we presume that most of the woody increase is due to the spread of 
nonnative woody species, rather than a recovery of a very limited native plant component in the 
area.  Several factors may contribute to the differential response at Schofield.  This site has 
~16% higher precipitation than Makua (Giambelluca et al., 2011), with higher fuel moistures 
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(Ellsworth et al, in review).  Additionally, fire managers at Schofield have been successful at 
containing fires within the fire break perimeter since improved fire management began in the 
1990’s.  A well trained fire crew is housed on this instillation, and a well-designed fire 
management plan has largely limited severe wildfires (Beavers and Burgan, 2001).   

 
2.  Remotely sensed vegetation index data are better predictors of fuel moisture than other 
models currently in  use for nonnative M. maximus-dominated grasslands in Hawaii 
 While MODIS-based models for live fuel moisture content showed only moderate 
improvements over WIMS-based models, an important additional advantage of this method is 
the continuous spatial coverage provided by satellite data.  The RAWS network has weather 
stations throughout the U.S., providing frequent points from which WIMS-based models can be 
extrapolated (http://www.raws.dri.edu/).  However, fires commonly occur in remote areas, and 
there are large regions, particularly in Hawaii, with no RAWS coverage.  In addition, many 
areas, including Hawaii, have very steep topography, where important weather variables such as 
precipitation and relative humidity change rapidly with spatial position (Giambelluca et al., 
2011), making accurate moisture prediction limited to small areas near RAWS towers.  Further, 
sensors on weather towers frequently are inoperable or have sensors that have not been calibrated 
in years and, thus, commonly transmit inaccurate data which requires a thorough quality 
assurance protocol on all data used – a time expenditure that few fire managers can justify.  In 
this study, for example, of all WIMS data points corresponding to in situ fuel moisture 
measurements (N=116), only 62% of them (N= 72) could be used in the analysis of models 
including WIMS data due to sensor or data transmission failure.   

While MODIS-based models had stronger relationships with fuel moisture than WIMS-
based models, the best predictive model for live fuel moisture included components of both 
systems.  The problems associated with the WIMS measurements (proximity to RAWS station, 
data quality) discussed above, however, should be carefully evaluated before using these hybrid 
models to predict fuel moistures.  The slight advantage of using the hybrid model (R2

pred =0.40) 
over the MODIS-based model (R2

pred =0.41) is likely not enough to warrant the additional trouble 
of assuring good WIMS data.  Dead fuel moisture was best predicted using a model based on 
MODIS data alone, eliminating the uncertainties associated with using WIMS data.    

Issues with spatial continuity should also be considered before developing a site-specific 
model for fuel moisture prediction.  In this paper, there was improved predictive capability (i.e. 
R2

pred =0.59 vs. R2
pred =0.40) of some models when a site term was included, but due to the rapid 

change in topography and, thus, climate in many areas of Hawaii (Giambelluca et al., 2011), site 
specific models should be used only with extreme caution outside of the area where in situ  fuel 
moisture measurements were taken and the models were developed.   

It was expected that there would be a tradeoff between accuracy in spatial and temporal 
resolution of fuel moisture content when weather station models were compared to MODIS-
based models.  Our hypothesis that daily MODIS data would be the best predictor of fuel 
moisture, however, was not supported by our data.  Instead, the best MODIS-only predictive 
models for both live and dead fuel moisture were developed using the 16-day composite 
data.  We expect that this result is a function of improved accuracy of each pixel value in the 
composite images outweighing the benefits of better temporal resolution of changes in vegetation 
phenology.  This finding provides an unexpected additional benefit for fire managers, as the 
16-day composites are easily accessed and freely downloadable from the internet.   
  

http://www.raws.dri.edu/
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Relationship to other recent findings and ongoing work on this topic  
 

Our results show that increased fuel bed depth and an increased effect of wind at the fuel 
surface (Freifelder et al., 1998; Andrews et al., 2005) in grassland has led to the potential for 
much more intense fire behavior compared to forest.  These data support previous work in 
Hawaii (Hughes et al., 1991; Freifelder et al., 1998), and elsewhere in the tropics (Williams and 
Baruch, 2000; Hoffmann et al., 2002; Rossiter et al., 2003), demonstrating that, at the plot level, 
the synergistic effects of fire and nonnative grass invasion can lead to a pervasive invasive grass-
wildfire cycle.  From this study, it can be inferred that at a landscape scale, the grass-wildfire 
cycle may not be the final endpoint for all fire impacted and nonnative grass invaded tropical 
ecosystems, as is currently the paradigm in the science and management communities.  A recent 
review of the impacts of woody invasive plants on fire regimes (Mandle et al., 2011) showed 
that, while most discussion centers around the effects of grass invaders, invasive woody plants 
can also alter ecosystem properties and patterns, thereby impacting future fire regimes.  A 
dominant nonnative woody invader in the forested area at Schofield, Schinus terebinthifolius 
Raddi (christmasberry) (Beavers and Burgan, 2001), may reduce fire temperature and spread 
(Beavers and Burgan, 2001; Stevens and Beckage, 2009), potentially offering an escape from the 
grass-wildfire cycle (Mandle et al., 2011).  While our results show that grasslands are prone to 
more extreme fire behavior than forests, it was not always the case that increased flammability 
led to widespread increases in grassland cover across the landscape.  In fact, many areas appear 
to be recovering a woody overstory, albeit nonnative, suggesting that active fire management is 
largely preventing further type conversion to nonnative grasslands. 

The predictive capability of MODIS vegetation index data shown in our research support 
similar work in shrubland, forest, and heathlands in Australia (Caccamo et al., 2011), where 
MODIS data better predicted live fuel moisture (R2= 0.69) than the commonly used KDBI 
predictors (R2= 0.15).  Strong relationships were also shown between remotely sensed VI’s and 
live fuel moisture in several Mediterranean vegetation types (0.72<R2< 0.82) (Chuvieco et al., 
2002) and in Coastal Plains in Georgia, USA (r =0.57-0.96) (Hao and Qu, 2007).  While our 
results showed improvement over the current system for live fuel moisture prediction in Hawaii, 
the relationships were weaker than those typically found elsewhere.  A possible explanation for 
this is that there is a large amount of standing dead guinea grass, particularly during drier months 
(Ellsworth et al, in press), making moisture content and, thus, reflectance signatures over an area 
represented by one pixel quite variable, as described by Danson and Bowyer (2004).   
 Dead fuel moisture content in non-native M. maximus grasslands in Hawaii was not well 
predicted by any of the models tested.  We hypothesized that vegetation indices would be 
stronger predictors of live fuel moisture than dead, but expected a better model for dead fuel 
moisture, as both live and dead fuel moistures change seasonally with precipitation events 
(Ellsworth et al in press).  While several previous studies have evaluated various remotely 
sensed greenness-based data products for their ability to predict live (Danson and Bowyer, 2004; 
Hao and Qu, 2007; Caccamo et al., 2011) and total fuel moisture content (Chuvieco et al., 2002), 
few have looked at the relationships with dead fuels alone (Nieto et al., 2010).  In tropical 
grassland ecosystems, dead fuels can make up well over half of the total fine fuel loads 
((Kauffman et al., 1998, Ellsworth et al  in press), and play a predominant role in driving fire 
behavior.  Despite this limitation of using MODIS-derived products to accurately predict dead 
fuel moisture content in these systems, our results show that the current WIMS-based prediction 
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systems (NFDRS, KDBI), which are commonly used in fire management today, do an even 
poorer job of predicting dead fuel moisture content in these ecosystems. 

 

Future work needed  
 
1.  Similar research in other dominant invasive grass species in Hawaii 
 Guinea grass is one of the more problematic invasive grass species in the Hawaiian Islands, 
but several others pose significant fire risk as well (i.e., fountain grass, Pennisetum setaceum; 
molasses grass, Melinis minutiflora; and buffelgrass, Pennisetum ciliare).  Investigations into the 
differences in fuels characteristics, fire spread, and the potential for using remote sensing data for 
fuel moisture prediction in these additional grassland ecosystems would better enable fire managers 
to make landscape scale fire risk assessments.   
 
2.  Further testing of MODIS fuel moisture prediction system in guinea grass ecosystems 
throughout the tropics 
 While this method has been shown to be an improvement on existing methodology for fuel 
moisture prediction in Hawaii, it did not perform as well as has been seen in temperate ecosystems.  
Some possible explanations for this may the large amount of standing dead guinea grass, 
particularly during drier months making moisture content and, thus, reflectance signatures quite 
variable within a single pixel. Further investigations in grass-dominated ecosystems throughout 
the tropics would be a valuable next step.  
 
3.  Additional investigation into site specific models for local land manager’s use. 
 One of our objectives was to create models that were useful over a wide geographical range, 
however, site specific models had greater predictive capability than did the more general model.  In 
areas where frequent fire ignitions are likely, it may be useful to have site specific models built to 
more precisely predict fuel moisture.   
 
4.  Development of a user-friendly web-based interface to access MODIS outputs. 
 Work is currently in progress to develop a web-based, user-friendly interface to make the 
readily accessible, freely available technologies presented in the current research more attractive to 
land and fire managers.  Currently there is a fair bit of technical jargon and several downloadable 
webtools that are used in the data processing protocol.  For land managers to be attracted to this 
technology, it would be very useful to streamline the processing to a single web interface. 
 



18 
 



19 
 

Table 1.  Live and dead fine fuel loads (in Mg ha-1), fuel moisture (%), and maximum fuel height (cm) in open guinea grass 
ecosystems and forested ecosystems with a guinea grass understory on leeward Oahu, Hawaii.  Means and standard errors are given 
for fuels variables at each site (N=3).  Significant model factors are indicated by bold font in the last three columns. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable Dillingham 
Grass   

Dillingham 
Forest   

Waianae Kai 
Grass   

Waianae Kai 
Forest  

Model 
R2 (%) 

MAP Site Type 

(P-value) 
live fine fuels  4.6 (0.9) 5.9 (3.9) 3.7 (0.4) 2.1 (1.0) 31.1 0.38 0.65 0.86 
dead fine fuels  19.5 (4.3) 19.5 (3.0) 13.7 (0.6) 10.4 (1.8) 51.4 0.52 0.80 0.89 
live fuel moisture  47.2 (3.6) 78.2 (13.1) 57.7 (9.0) 173.6 (27.3) 84.2 0.02 0.18 0.19 
dead fuel moisture  13.6 (2.3) 23.4  (6.8) 15.5 (2.9) 65.2 (31.4) 61.7 0.05 0.14 0.95 
max. fuel height 138.6 (9.7) 71.0 (3.0) 71.3 (10.7) 72.3 (12.0) 76.5 0.02 <0.01 <0.01 
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Table 2.  Predicted fire behavior under both moderate (15 kph) and severe (30 kph) wind conditions in open guinea grass 
ecosystems and forested ecosystems with a guinea grass understory on leeward Oahu, Hawaii.  Means and standard errors are 
given for fire behavior variables at each site (N=3).  Significant model factors are indicated by bold font in the last three columns. 

 

Variable 
Wind 

condition 

     

Dillingham 

Grass 

 

   

 Dillingham 

Forest 

Waianae 

Kai Grass 

Waianae Kai 

Forest 

Model 

R2 (%) 

MAP Site Type 

 (P-value) 

Rate of Spread 

(m min -1) 

moderate 14.9 (1.6) 2.7 (1.2) 5.8 (0.6) 0.4 (0.4) 91.0 0.04 <0.01 <0.001 

severe 30.7 (3.1) 5.7 (2.6) 12.0 (1.2) 0.8 (0.8) 91.1 0.04 <0.01 <0.001 

Flame Length 

(m) 

moderate 5.8 (1.0) 2.1 (0.5) 3.0 (0.2) 0.3 (0.3) 84.8 0.61 0.10 <0.01 

severe 8.1 (1.4) 2.9 (0.8) 4.3 (0.3) 0.4 (0.4) 84.6 0.62 0.11 <0.01 

Fireline Intensity 

(kW m-1) 

moderate 12829 (4075) 1503 (750) 2983 (537) 57.7 (57.7) 71.3 0.13 0.04 <0.01 

severe 26355 (8298) 3154 (1598) 6135 (1084) 123.7 (123.7) 71.5 0.13 0.04 <0.01 

Probability of 

Ignition  (%) 

moderate 21.0 (7.0) 10 (10) 14.3 (5.6) 0.3 (0.3) 38.5 0.84 0.82 0.27 

severe 21.0 (7.0) 10 (10) 14.3 (5.6) 0.3 (0.3) 38.5 0.84 0.82 0.27 
         



Table 3.  Rates of land cover change at Makua Military Reservation and Schofield Barracks from 
1950 to 2011.  Change is given in units of average hectares per year for each date range.  Total 
size for study areas are as follows:  Schofield Grass, 745 ha; Schofield Forest, 1576 ha, Makua 
Grass, 320 ha; and Makua Forest, 1244 ha. 

 

 1950-1962 1962-1977 1977-1992 1992-2004 2004-2011 1950-2011 (mean) 
Schofield Grass      grass 3.0 1.2 2.6 0.7 -5.5 1.2 

woody -2.0 -0.7 -3.2 -1.5 -4.6 -2.1 
bare ground 0.0 -0.1 0.0 0.2 -0.5 0.0 

developed 0.0 0.0 0.0 0.0 0.0 0.0 
shadow 0.0 0.0 0.0 0.0 0.0 0.0 

MTA -1.0 -0.4 0.5 0.6 10.6 0.9 
        Schofield Forest     grass -8.4 -7.3 -2.7 -1.0 -1.1 -4.5 

woody -0.7 10.8 5.3 0.6 0.7 4.0 
bare ground 0.9 -0.9 0.0 0.4 -0.7 0.0 

developed 0.0 0.0 -0.4 -0.2 0.9 -0.1 
shadow 8.5 -4.3 -2.7 0.0 0.0 -0.1 

MTA -0.3 1.8 0.5 0.2 0.1 0.5 
  1962-1977 1977-1993  1993-2004 2004-2010  1962-2010 (mean) 
        Makua Grass          grass  7.4 5.0 -6.3 6.8 3.4 

shrub  -5.7 -6.6 8.1 -6.7 -3.0 
tree  -1.9 0.2 -0.2 0.0 -0.6 

bare ground  0.2 0.7 -1.1 -0.1 0.0 
developed  0.0 0.0 0.0 0.0 0.0 

shadow  0.0 0.0 0.0 0.0 0.0 
MTA  0.0 0.8 -0.5 0.0 0.2 

Makua Forest         grass  0.8 9.5 -2.3 10.6 4.2 
shrub  2.0 -1.0 3.9 -19.9  -1.3 

tree  1.0 -1.4 3.3 8.7 1.7 
bare ground  0.4 -0.2 0.1 0.0 0.1 

developed  0.0 0.0 0.0 0.0 0.0 
shadow  -4.2 -6.8 -4.9 0.5 -4.6 

MTA   0.0 0.0 0.0 0.0 0.0 
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Table 4.  Pearson correlation coefficents (r) showing the strength of the relationships between 
Terra-MODIS derived daily, 8-day, and 16-day vegetation indices for guinea grass ecosystems 
on Oahu, Hawaii.  Bold font indicates values that are statistically significant at the P<0.05 level. 

 
 

 

 

 

Live Dead Litter 

 

r P-value r P-value r P-value 

Single day 

       EVI_1 0.338 0.001 0.170 0.093 0.184 0.069 

NDVI_1 0.088 0.368 -0.015 0.875 -0.019 0.844 

EVI2_1 0.081 0.410 0.033 0.733 0.035 0.717 

VARI_1 0.165 0.100 0.075 0.456 0.084 0.404 

NDWI_1 -0.026 0.787 0.045 0.642 0.083 0.398 

NDII_1 0.037 0.704 0.186 0.056 0.150 0.123 

RGRE_1 0.055 0.576 0.045 0.643 -0.005 0.960 

Integral_1 0.105 0.282 0.142 0.144 0.124 0.204 

8 day 

       EVI_8 0.399 0.000 0.333 0.000 0.280 0.003 

NDVI_8 0.347 0.000 0.309 0.001 0.403 0.000 

EVI2_8 0.328 0.000 0.379 0.000 0.380 0.000 

VARI_8 0.098 0.307 0.028 0.770 0.040 0.676 

NDWI_8 0.020 0.837 0.120 0.211 0.016 0.871 

NDII_8 0.139 0.144 0.220 0.020 0.160 0.093 

RGRE_8 0.274 0.003 0.140 0.139 0.268 0.004 

Integral_8 -0.101 0.287 -0.051 0.590 -0.200 0.033 

16 day MODIS products 

     EVI_16 0.364 0.001 0.423 0.000 0.325 0.003 

NDVI_16 0.462 0.000 0.362 0.001 0.329 0.002 

EVI2_16 0.449 0.000 0.450 0.000 0.374 0.001 

RGRE_16 0.398 0.000 0.049 0.663 0.119 0.283 
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Table 5.  Models predicting in situ live fuel moisture.  MODIS-based models were generated from remotely sensed Terra-MODIS 
daily, 8-day composites, and 16-day vegetation index data.  WIMS-based models are calculated from onsite weather data.  Hybrid 
models were developed using the best predictors from both MODIS and WIMS-based models.  Bold font indicates strongest and 
recommended models. 
       Model R2  Pred R2  P 
MODIS-based models    

1-day LFM= 124 + 135 EVI_1 0.15 0.00 <0.001 
8-day LFM= 91.1 + 171 EVI_8 + 78.4 NDVI_8 0.20 0.15 <0.001 

16-day  LFM=2.1 + 402 EVI2_16 + 144 NDVI_16 0.46 0.40 <0.001 
WIMS-based models 

 
   

NFDRS LFM = 78.7 + 0.807 NFDRS 0.37 0.33 <0.001 
KBDI LFM = 191 - 0.0624 KBDI 0.06 0.01 0.050 

Hybrid models 
 

   
1-day LFM = 101 + 67.6 EVI_1 + 0.654 NFDRS - 0.0652 KBDI 0.46 0.37 <0.001 
8-day LFM = 91.2 + 7.77 EVI_8 + 0.735 NFDRS - 0.0524 KBDI 0.49 0.41 <0.001 

16-day LFM = 35.2 + 0.650 NFDRS + 244 EVI_16 0.38 0.30 <0.001 
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Table 6.  Models predicting in situ dead fuel moisture.  MODIS-based models were generated from remotely sensed Terra-MODIS 
daily, 8-day composites, and 16-day vegetation index data.  WIMS-based models are calculated from onsite weather data.  Hybrid 
models were developed using the best predictors from both MODIS and WIMS-based models.  Bold font indicates the strongest and 
recommended model. 
  Model R2 Pred R2  P 
MODIS-based models    

1-day DFM = 16.0 + 8.61 EVI_1 0.00 0.00 0.082 
8-day DFM = 10.5 + 16.7 EVI_8 + NDVI_8 0.14 0.06 0.001 

16-day DFM = 5.55 + 39.3 EVI2_16 + 10.9 NDVI_16 0.19 0.12 0.002 
WIMS-based models 

 
   

NFDRS DFM = 7.62 + 1.12 NFDRS 0.05 0.00 0.066 
KBDI DFM = 19.9 - 0.00355 KBDI 0.01 0.00 0.477 

Hybrid models 
 

   
1-day DFM = 8.53 + 4.93 EVI_1 - 0.00807 KBDI + 1.11 NFDRS 0.13 0.00 0.116 
8-day DFM = 4.34 + 20.8 EVI_8 + 0.945 NFDRS 0.14 0.00 0.010 

16-day DFM = 0.79 + 56.2 EVI2_16 + 0.577 NFDRS 0.19 0.00 0.026 
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Figure 1.  Land cover at Makua Military Reservation on leeward Oahu, Hawaii from 1962 
through 2010.  The area inside the firebreak is heavily utilized for military training activities, and 
fire is frequent.  The area outside the firebreak has historically been forested, has many 
threatened and endangered species, and is impacted to a lesser extent by military activities and 
fire.   
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Figure 2.  Land cover at Schofield Barracks on leeward Oahu, Hawaii from 1950 through 2011.  
The area inside the firebreak is heavily utilized for military training activities, and fire is 
frequent.  The area outside the firebreak is maintained for woody species, and is less affected by 
military activity and fire. 
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Figure 3:  Temporal trends of in situ live and dead fuel moisture and daily MODIS-derived 
vegetation indices (VI) for nonnative invasive guinea grass ecosystems at (a) Schofield Barracks, 
(b) Dillingham Ranch, and (c) Yokohama State Park on Oahu, Hawaii from October 2009 – 
October 2010.  VI’s (NDVI, EVI, and EVI2) are shown by black lines, and live (solid) and dead 
(dashed) fuel moisture is shown in grey.  
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Figure 4:  Temporal trends in 8-day composite and 16-day MODIS-derived vegetation indices 
(VI) for nonnative invasive guinea grass ecosystems at Schofield Barracks, Dillingham Ranch, 
and Yokohama State Park on Oahu, Hawaii from October 2009 – October 2010.   
 



9 
 

NFDRS Predicted Live Fuel Moisture (%)

50 100 150 200 250 300M
ea

su
re

d 
Li

ve
 F

ue
l M

oi
st

ur
e 

(%
)

50

100

150

200

250

300

Dillingham 
Yokohama
Schofield 

 
R2 = 0.37 
P < 0.01 

 
 
Figure 5:  NFDRS system of live fuel moisture prediction (x-axis) vs. in situ live fuel moisture 
(y-axis) measurements.   
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Figure 6:  NFDRS system of dead fuel moisture prediction (x-axis) vs. in situ dead fuel moisture 
(y-axis) measurements.   
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Figure 7:  Live fuel moisture prediction (x-axis) using a) MODIS vegetation index and b) Hybrid 
models vs. in situ live fuel moisture (y-axis) measurements.   
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Figure 8:  Dead fuel moisture prediction (x-axis) using MODIS vegetation indices vs. in situ live 
fuel moisture (y-axis) measurements.   
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