Substances Critical to National Security Briefing for the Committee on Armed Services of the U.S. House of Representatives Pursuant to the House Report 118-529, page 130, accompanying H.R. 8070, National Defense Authorization Act for Fiscal Year 2025 February 2025 The estimated cost of this report or study for the Department of Defense is approximately \$20,416 for the 2025 Fiscal Year. This includes \$10,000 in expenses and \$20,406 in DoD labor. Generated on 2025 January 7 RefID:3-FCD9F8E Report 118-529 of the Committee on Armed Services, House of Representatives, accompanying H.R. 8070, National Defense Authorization Act for Fiscal Year 2025 requested a briefing on Substances Critical to National Security: "The committee recognizes the important role critical chemistries play in the defense industrial base and the need to maintain a domestic supply of chemicals for products and uses essential for national security. The committee directs the Secretary of Defense, in coordination with the Chemical and Material Risk Management Program of the Department of Defense, to submit a briefing to the House Committee on Armed Services not later than January 31, 2025, outlining uses of chemical substances undergoing risk evaluation by the Environmental Protection Agency under the Toxic Substances Control Act, that are critical to the national security of the United States. The report should include the following: - 1) the sectors outlined in the February 2022 report of the Department of Defense titled "Securing Defense-Critical Supply Chains," and - 2) sectors of strategic importance for domestic production and investment to build supply chain resilience, including kinetic capabilities, energy storage and batteries, and microelectronics and semiconductors." - U.S. Environmental Protection Agency (EPA) Toxic Substances Control Act (TSCA) §6 Process for Existing Chemicals - Chemical Substances Undergoing TSCA §6 Risk Evaluation - Department of Defense (DoD) Reliance on Chemicals and Materials - Critical Sectors - Data Gathering Methodology - Known Chemical Applications within the Critical Sectors - Kinetic Capabilities - Energy Storage and Batteries - Microelectronics - Castings and Forgings - Strategic and Critical Materials - Other Critical Applications - Conclusions #### **EPA TSCA §6 Process for Existing Chemicals** EPA process and timelines for prioritizing and evaluating the risks of existing chemicals. This briefing focuses on TSCA high priority chemicals currently undergoing risk evaluations; however, there are other chemicals of DoD interest undergoing TSCA risk management. ## **Chemical Substances Undergoing TSCA §6 Risk Evaluation** This list includes the 20 chemicals designated on December 30, 2019, as high priority for risk evaluation¹ and four chemicals undergoing manufacturer-requested risk evaluations². | Chemical Group | Chemical | CASRN | | | | | |-----------------|-------------------------------------------------------|------------------------|--|--|--|--| | Flame | Tetrabromobisphenol A (TBBPA) | 79-94-7 | | | | | | Retardant (FR) | Tris(2-chloroethyl) phosphate (TCEP) | 115-96-8 | | | | | | Retardant (FR) | Phosphoric acid, triphenyl ester (TPP) | 115-86-6 | | | | | | | Butyl benzyl phthalate (BBP) | 85-68-7 | | | | | | | Dibutyl phthalate (DBP) | 84-74-2 | | | | | | Phthalate | Dicyclohexyl phthalate (DCHP) | 84-61-7 | | | | | | (mostly used as | Di-ethylhexyl phthalate (DEHP) | 117-81-7 | | | | | | plasticizers) | Di-isobutyl phthalate (DIBP) | 84-69-5 | | | | | | | Diisodecyl Phthalate (DIDP)* | 26761-40-0; 68515-49-1 | | | | | | | Diisononyl Phthalate (DINP)* | 28553-12-0; 68515-48-0 | | | | | | | 1,1-dichloroethane (1,1-DCA) | 75-34-3 | | | | | | | 1,2-Dichloroethane (1,2-DCA) | 107-06-2 | | | | | | Solvent | 1,2-dichloropropane (1,2-DCP) | 78-87-5 | | | | | | | 1,1,2-Trichloroethane (1,1,2-TCA) | 79-00-5 | | | | | | | Trans-1,2-Dichloroethylene (Trans-DCE) | 156-60-5 | | | | | | | 1,3-Butadiene | 106-99-0 | | | | | | | Ethylene Dibromide | 106-93-4 | | | | | | | Formaldehyde | 50-00-0 | | | | | | | Galaxolide (HHCB) | 1222-05-5 | | | | | | Other | Octamethylcyclotetrasiloxane (D4) * | 556-67-2 | | | | | | | ortho-Dichlorobenzene (o-DCB) | 95-50-1 | | | | | | | para-Dichlorobenzene (p-DCB) | 106-46-7 | | | | | | | Phthalic anhydride | 85-44-9 | | | | | | | Octahydro-tetramethyl- naphthalenyl-ethanone (OTNE) * | Category | | | | | ^{*} Chemicals undergoing manufacturer-requested risk evaluations. ¹ 84 FedReg 71924 (Dec 30, 2019); ² Trans-DCE is present in the mold release chemicals and release films typically used in composite manufacturing processes. - BBP and DIBP were mentioned in EPA's scope documents as being tied to the following casting COUs: - BBP - > Industrial/Commercial Use: Castings - > Industrial/Commercial Use: Other Uses Plastic and rubber products not covered elsewhere (e.g., component of compound (resin) used to cast models) - DIBP - > Industrial Use: Adhesive and Sealants - AIA commented that the major use of DIBP is in casting sealant.¹ - EPA's Final Use Report for DIDP mentioned that Fibre Glast Developments Corp. identified DIDP as an ingredient in an industrial urethane casting resin (hardener) for automobile, aircraft and marine parts, and tooling applications.² - There are gaps in our understanding of the applications of TSCA chemicals within these sectors. Applications may occur so far upstream in the supply chain to make it difficult to gather information from DoD information resources. ### **Additional Critical Applications** | Use in tape, cables and connectors | Oils, greases, fluids, and lubricants | Precision cleaning fluids | Degreasing/cleaning fluids | |------------------------------------|---------------------------------------|---------------------------|-----------------------------| | Adhesives | Sealing Compounds | Inspection Fluids | Insulation and foam blowing | | Resins for specialty materials | Textiles | Construction materials | Transportation | SALES CRETARY OF OR THE SALES OF O ### Critical Sectors and Applications Crosswalk¹ | 37A | Chemical | Kinetic
Capabilities | Energy Storage
and Battery | Microelectronics | Castings and Forgings
and Strategic and
Critical Materials | Use in tapes, cables,
and connectors | Oils, greases, fluids,
and lubricants | Precision cleaning
fluids | Degreasing/
cleaning fluids | Adhesives | Sealing compounds | Inspection fluids | Insulation and
foam blowing | Resins for specialty materials | Paints and coatings | Textiles | Construction
materials | Transportation | |-----------|-----------------------|-------------------------|-------------------------------|------------------|--|---|--|------------------------------|--------------------------------|-----------|-------------------|-------------------|--------------------------------|--------------------------------|---------------------|----------|---------------------------|----------------| | FR | TBBPA | | X | X | | X | | | | X | | | | X | X | X | X | X | | | TCEP | | | | | | | | | | | | X | X | X | X | X | X | | | TPP | X | | | | | X | | | X | | X | X | X | X | X | X | X | | Phthalate | BBP | | | X | X | X | X | | | X | X | | | | | X | X | X | | | DBP | X | | X | | | | | | X | X | X | | X | X | | | | | | DCHP | | | | | | | | | X | | | | | X | X | X | X | | | DEHP | X | X | X | | X | | | | X | X | | X | X | X | X | X | X | | | DIBP | | | | X | | | | | X | X | | | | X | X | X | X | | | DIDP | X | | X | X | X | X | | X | X | X | X | X | X | X | X | X | X | | | DINP | X | | X | | X | X | | X | X | | | | X | X | X | X | X | | | 1,1 - DCA | | X^2 | | | | | | | X | | | | | | | | | | Solvent | 1,2 - DCA | | | | | | X | | X | X | | | | X | X | | | | | | 1,2 - DCP | | | | | | | | | | | | | | | | | | | V. | , , | | | | | | | | | X | | | | | | | | | | | Trans-DCE | | | X | X | | X | X | X | X | | X | | | | | | | | | 1,3-Butadiene | X | X ³ | X | | X | X | | | X | X | | | X | X | | X | X | | | Ethylene
Dibromide | | | | | | X | | | | | | | | | | | | | | Formaldehyde | X | | X | | | X | | | X | X | | X | X | X | X | X | X | | Other | HHCD | D4 | X | | X | | | | X | X^4 | X | X | | | | X | X | | X | | | o-DCB | | | | | | X | | X | | | | | X | | | | | | | p-DCB | | | | | | X | | X | | | | | X | | | | | | | Phthalic
Anhydride | X | | | | | X | | | X | X | | | X | X | X | X | X | | | OTNE | | | | | | | | | | | | | | | | | | ¹ Unless otherwise noted below, the chemical uses were noted in documents publicly available in EPA's TSCA regulatory dockets (e.g. EPA Scope documents, EPA Final Use reports, DIB comments submitted to the dockets). See https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/ongoing-and-completed-chemical-risk-evaluations-under for Docket numbers. ² 1,1-DCA is an intermediate used to form vinyl chloride (https://www.epa.gov/sites/default/files/2016-09/documents/ethylidene-dichloride.pdf), which is used to form battery binders (https://cen.acs.org/materials/polymers/Solvay-Orbia-make-battery-binder/100/web/2022/11). ³ https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/celc.202300651. ⁴ NAVSOLVE is qualified to MIL-PRF-32597. https://ecolink.com/wp-content/uploads/NAVSOLVE-PDS.pdf. # The Current Chemical Market Environment is Dynamic These factors contribute to momentum that results in a *de facto ban* or product obsolescence. Market forces are directly impacting mission capability by limiting the DoD's supply chain of mission critical products. Commercial entities may exit the market even when there's a defense exemption. #### **Companies Exiting Market or Moving Offshore** Manufacturers may voluntarily exit the market, sometimes discontinuing products with no available alternatives. Chemical obsolescence drives product obsolescence, which can impact the availability of some niche market, defense-related products. ### **EPA Regulatory Docket Comments** - Aerospace Industries Association (AIA) commented on 19 of the 20 TSCA high priority chemicals.¹ - Majority of the chemicals were listed to be "qualified for use in federal, military, industry and company proprietary specifications." - "If this substance cannot be used, the industry would need to conduct research to reformulate or develop a product with equivalent performance and characteristics. Aerospace products are extremely complex and a qualified drop-in substitution with identical or superior performance is not always guaranteed or readily available." - NASA shared similar critical applications as DoD and commented on 13 of the 20 high priority chemicals.² - Electronics industry including IPC, SIA, Albemarle, Huntsman, and ITW Contamination Control Electronics commented on electronic applications related to TBBPA, formaldehyde, D4, and trans-DCE.^{3,4,5,6} ¹ Comment provided by AIA. 19 June 2019. https://www.regulations.gov/document/EPA-HQ-OPPT-2018-0465-0006. ² Comment provided by NASA. 26 May 2020. https://www.regulations.gov/comment/EPA-HQ-OPPT-2018-0462-0039. ³ Docket for TBBPA: EPA-HQ-OPPT-2018-0462. (https://www.regulations.gov/docket/EPA-HQ-OPPT-2018-0462) ⁴ Docket on formaldehyde: EPA-HQ-OPPT-2018-0438. (https://www.regulations.gov/docket/EPA-HQ-OPPT-2018-0438) ⁵ Docket on D4: EPA-HQ-OPPT-2018-0443. (https://www.regulations.gov/docket/EPA-HQ-OPPT-2018-0443) ⁶ Docket on trans-DCE: EPA-HQ-OPPT-2018-0465. (https://www.regulations.gov/docket/EPA-HQ-OPPT-2018-0465) ### EPA Risk Management under TSCA §6(a) If at the end of the risk evaluation process EPA determines that a chemical presents an unreasonable risk of injury to health or the environment, the agency must start the risk management process to reduce or eliminate these risks. **EPA can take several actions, alone or in combination, to address unreasonable risks:** - Prohibit or otherwise restrict-the manufacture, processing, or distribution in commerce of the substance or mixture entirely or for a particular use. - Limit the amount of the substance or mixture that may be manufactured, processed, or distributed for a particular use or above a set concentration for a particular use. - Require adequate minimum warnings and instructions with respect to its use, distribution in commerce, or disposal. - Require recordkeeping, monitoring, or testing by manufacturers and processors. - Prohibit or regulate the manner or method of commercial use which may include the establishment of a workplace chemical protection program with a binding occupational Existing Chemical Exposure Limit (ECEL). - Prohibit or regulate manner or method of disposal. - Direct manufacturers/processors to give notice of the determination of risk to distributors and users and replace or repurchase the substance or mixture. - Many of the TSCA §6 high priority chemicals undergoing risk evaluation examined in this briefing have numerous mission critical defense applications. - EPA risk management rulemakings could ban or restrict these uses if they are determined to pose unreasonable risk of injury to health or the environment. - Many of these high priority chemicals serve as alternatives to chemicals being restricted under current TSCA §6(a) risk management rulemakings for the TSCA 10 high priority chemicals. Thus, future rulemakings will place added pressure on the dwindling number of chemicals that provide the necessary functionalities to products and materials critical to weapon systems and platforms. - The Department engages with EPA as early as possible on critical conditions of use or applications, but DoD's ability to share information is limited by the level of detail in supplier disclosures. - The Department is preparing to review the draft TSCA §6 risk evaluations in FY 2025 and will engage in E.O. 12866 interagency review of EPA's TSCA risk management rulemakings. - The Department will continue efforts to learn about more critical chemical applications within the DoD as well as the DIB.