Acknowledgements

This visual guide and associated report were funded by the DoD Legacy Resource Management Program in fiscal year 2013 (Legacy Project 13-707; Cooperative Agreement W9132T-13-2-0031). A.D. Marble & Company and Naval Facilities Engineering Command, Mid-Atlantic would like to acknowledge the following for their support and assistance in completing this project: Christopher Daniel, Fort Belvoir; Jason Huggan, Picatinny Arsenal; Susan Paul, NSA Bethesda; Kerry Vautrot, Portsmouth Naval Shipyard; Thomas Wright, NSF Indian Head; Julie Darsie, Naval Facilities Engineering Command, Washington, and the remaining Cultural Resources Managers and their designates throughout the Northeast and Mid-Atlantic regions who responded to our initial survey; Amanda Apple, Maryland Historical Trust; Scott Doyle, Pennsylvania Historical and Museum Commission; Marc Holma, Virginia Division of Historic Resources; Caroline Alderson and Claire Hosker, U.S. General Services Administration; Jennifer Groman, NASA; and Mimi Sadler, Sadler & Whitehead Architects.

Disclaimer: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of Defense position unless so designated by other authorized documents.
TABLE of CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>ii-iii</td>
</tr>
<tr>
<td>1. STEEL WINDOWS</td>
</tr>
<tr>
<td>1-3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5-9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>2. CORRUGATED WIRE GLASS</td>
</tr>
<tr>
<td>11-12</td>
</tr>
<tr>
<td>13-14</td>
</tr>
<tr>
<td>15-20</td>
</tr>
<tr>
<td>3. GLASS BLOCK</td>
</tr>
<tr>
<td>21-23</td>
</tr>
<tr>
<td>24-25</td>
</tr>
<tr>
<td>26-30</td>
</tr>
<tr>
<td>31-38</td>
</tr>
<tr>
<td>39-41</td>
</tr>
</tbody>
</table>

Opposite page photos:

The Department of Defense (DoD) inventory of early- to mid-twentieth-century buildings is facing a critical point in the serviceable lives of original windows - namely those constructed of steel, corrugated wire glass, and glass block. The *20th-Century Building Materials and Suitable Substitutes Windows Visual Guide* is designed as a quick-reference tool for Cultural Resource Managers (CRMs), facility planners, architects, and engineers entrusted with preservation, maintenance, and navigation of the Section 106 process of the National Historic Preservation Act while balancing project needs and regulatory requirements.

This Visual Guide is intended to provide the user with the ability to recognize and define steel, corrugated wire glass, and glass block windows as character-defining features in early- to mid-twentieth-century historic buildings (i.e., those buildings eligible for listing in or listed in the National Register of Historic Places, either individually or as part of a larger historic district). Each window type is explored to familiarize the user with the appearance of the material, construction methods applicable for identification or replacement, context of popular use, and *in-situ* examples in existing DoD architecture. The information and images in the Visual Guide are provided to assist the user in research, interpretation, and possible future mitigation.
The Visual Guide images reference the extensive research and investigation located in the *20th-Century Building Materials and Suitable Substitutes: Windows* Technical Report. Within Section 3.0, History of Twentieth-Century Window Types of the report, the materials and construction methods are compounded to include unique characteristics, development, and manufactures of each material to be utilized for future mitigation documentation. The common uses and examples simply scratch the surface of Section 6.0, Case Studies, which documents steel, corrugated wire glass, and glass block windows of individual DoD buildings across six installations with considerations for maintenance, preservation, replacement, regulation, and mitigation throughout the Section 106 process.

Windows are among the most prominent character-defining features of historic buildings, particularly those of the early to mid-twentieth century, and are also the most vulnerable to deterioration. Through recognition and context, the Visual Guide aims to familiarize CRMs with the distinctiveness and use of three predominant twentieth-century window types. Further information, examples, and guidance are available within the *20th-Century Building Materials and Suitable Substitutes: Windows* Technical Report.
Explanation of Material

The height of steel windows called for either a mechanical (left) or manual (right) method of operating movable panels for ventilation. Continued use is key for keeping operability as designed.

A central operable panel is a common configuration of a steel window. When replacing panes of glass, it is important to note the reduced sizes within the operable sections.

The section shows the shape and location of muntins and frames in common steel installation.

The Fenestra joint wove intersecting muntins, which produced strength and allowed for slimmer glazing bars.
This 1927 technical diagram of a Lupton Steel Window illustrates how the window is attached to the frame.

This rendering shows the clean lines and large amounts of glass characteristic of a steel window. The accompanying sectional perspective conveys the depth of the frame.
Henry Hope & Sons 1904 wrought steel windows were the predecessor to the more common rolled steel windows. The steel’s strength allowed the character-defining feature of narrow muntins.

Crittal Windows Ltd. was credited for standardizing the steel window industry. Crittal opened the Detroit Steel Product Company in 1907, and this diagram shows the standard sizes of steel windows available in 1926.

Steel windows were historically offered in various operability configurations, including (left to right) continuous, austral, pivot, double-hung, projecting, and casement.
Explanation of Construction

Tall steel windows of industrial structures often had an upper operable panel for ventilation. When in a series, all the steel windows could be connected by a mechanical operator to open and close efficiently.

Steel windows could be hinged at the top to create continuous windows to maximize ventilation.

To further prevent rust, steel windows commonly had pins in bronze or an equally corrosion-resistant metal.

This section diagram shows the window assembly of subframe, frame, and sash.

This section details the hinge construction, with steel and bronze connections on each sash.
Large steel windows in a series created a distinct change in the architecture of industrial and commercial structures.

Steel windows could be configured for maximum ventilation, a desirable quality for utilitarian structures like power houses and boiler rooms.
The strength of steel allowed for large expanses of glass that allowed maximum light. This was seen as beneficial in institutional buildings like schools, laboratories, and research facilities.

Steel windows could also be scaled back in size for use in residential buildings.
STEEL WINDOWS

Examples of Common Use

A continuous steel window after rehabilitation at Portsmouth Naval Shipyard, Building 240. (Photographer: Kerry Vautrot, 2014)

This steel window shows signs of corrosion, a common occurrence in industrial applications. Located at NSF Indian Head, Building 292. (Photographer: Thomas Wright, 2014)
Steel windows can be maintained with minimal actions. The steel window of Building 768 at NSF Indian Head is showing signs of corrosion, but with some scraping and repainting, the issue can be reversed. (Photographer: Thomas Wright, 2014)

The popularity of steel windows was apparent in workspaces of all types and configurations.
The benefits of light, ventilation, and easy maintenance resulted in large expanses of steel windows in industrial buildings. The same benefits were recognized and used in traditional window sizes for residential construction.
Today, steel windows are often replaced with aluminum. This diagram shows how an aluminum replacement attempts the configuration of steel windows, while adding additional thermal insulation.
Corrugated wire glass is described as glass with a wire mesh enclosed within the surfaces of the sheet, then corrugated, which creates a continuous curve.

Wire glass, invented in 1892, is stronger than plain glass and the wire mesh is able to hold the glass shard in place when broken.

Actinic glass was an amber-tinted glass that excluded 85% of ultra-violet rays and further contributed to glare protection.

Corrugated wire glass came in two types: deep or shallow corrugation, shown here in cross section. Deep corrugation has a steeper angle with 2 1/2" from corrugation to corrugation. Shallow corrugation has a more gradual angle with 2 11/16" from corrugation to corrugation.
The Hires Turner Glass Company called corrugated wire glass “the lightest and strongest building material of its character obtainable,” and promoted it as the answer to many issues of existing industrial construction. The large panels allowed large expanses of glass without obstruction (left), and the corrugations allowed a much greater load than regular flat glass (right).
Corrugated wire glass panels were joined by a metal cover cap, shown here. When properly installed, the construction system was waterproof.

Panels were generally installed directly on the superstructure and could be adapted to and installed on steel, wood purlins, or concrete.

The panels were as lightweight as any building material on the market, and eliminated the need for specially constructed skylights or windows. The materials could be easily and quickly erected by only a few men, as shown here.
This three-dimensional diagram shows the overlay construction of corrugated wire glass skylights, including how the corrugations mesh to create a waterproof connection.

The panels were also commonly used for canopies, shown here with another three-man team completing the construction.
Combining the key characteristics of immense strength, diffused light, flexibility, fire resistance, and simple maintenance, corrugated wire glass found early popularity as an ideal material for skylight construction.

The diffused light allowed for bright interiors without shadows, an important quality when dealing with machinery and factory work.

Corrugated wire glass was also used in marquises, as shown here in drawing (left) and application (right).
Corrugated wire glass allowed light with protection and became a common detail of industrial structures.

The panels could be a maximum 60" clear span without intermediate support, lending them to be a popular choice for side wall construction.

The lightweight yet strong material was soon advertised for every surface of an industrial structure.

Two examples of the use of corrugated wire glass at the Philadelphia Navy Yard, in the Pipe and Copper Shop (top) and Structural Assembly Shop (bottom).
Corrugated wire glass could be used on small-scale projects as well, shown here as a skylight replacement material.

Corrugated wire glass was adapted to residential application by the 1950s as just corrugated glass; the wire mesh was removed.

Corrugated wire glass was more commonly used in large expanses. It is shown here in various applications with the goal of maximum, diffused light.
The use of corrugated wire glass was adapted to various roof types.

Institutional buildings soon recognized the usefulness of diffused light, such as in this hospital application.

Corrugated wire glass was a dominant building material in the American industrial landscape.
The corrugated wire glass of Portsmouth Naval Shipyard Building 159 is an example of use on a smaller scale. (Photographer: Kerry Vautrot, 2014)
The most common application of corrugated wire glass was in large expanses, shown here in the curtain wall of Portsmouth Naval Shipyard Building 92. (Photographer: Kerry Vautrot, 2014)

The corrugated wire glass window of Portsmouth Naval Shipyard Building 153 shows the qualities of diffused light and privacy. (Photographer: Kerry Vautrot, 2014)
Glass block became popular as a window material because of its ability to create diffused and directional daylighting without increasing heat, causing glare, or sacrificing privacy.

Owens-Illinois Glass Company’s first glass block design was a hollow, six-sided unit made by separately pressing a five-sided unit and a lid. The lid was then hermetically sealed and had the dimensions of a masonry brick.

Glass block was developed in various patterns and designs to adapt to a range of lighting issues, including designs to control the direction, diffusion, and distribution of light.
Pittsburgh–Corning Corporation used this diagram in 1949 to explain the two types of glass block they offered: one which controlled where the light was projected, and another using a fibrous glass screen to eliminate direct light.
In 1939, the Owens-Illinois Glass Company advertised for various patterns and shapes of glass block.

This diagram shows the benefit of directional glass block in a classroom. The top diagram shows how light is distributed in a traditional glass pane window. The bottom diagram shows how by directing the light through glass blocks, the interior is brighter and consistent.

This diagram shows the angles in which light enters and leaves a directional glass block.
This 1939 Pittsburgh–Corning Corporation blueprint shows the recommended construction details for a fireproof glass block panel, including head, jamb, and sill details.

This construction diagram shows the simplicity of construction, as glass block is laid in a similar fashion to traditional masonry.
Photographs of the construction process show mortar was laid so that joints measured at least 3/8" thick.

This three-dimensional section diagram shows sill and jamb construction (left) and drawing details (right).
Examples of Common Use

Commercial buildings benefitted from the increased daylight, and glass block was considered the perfect material to show window displays in a natural light.

The ability to control heat loss meant a more practical material for large expanses of window walls.
Glass block also became a popular choice for sash replacement.

Glass block allowed diffused light and minimal shadow, considered perfect for drafting offices, as seen here.

The glass block curtain wall maximized yet diffused daylight, obstructed direct views within, and maintained thermal control similar to a masonry wall.
The privacy of glass block walls made it popular for exterior and interior walls of offices, where light was needed but sound was insulated.

Laboratories and research facilities found glass block optimal for light without glare, sound insulation, and privacy.

Glass block was also adopted in public and institutional buildings.
While modern architecture looked to maximize daylight, sometimes glare and shading became a problem. Bright interiors were beautiful, but privacy became a concern. Glass block addressed these issues, offering a solution for industrial, commercial, residential, and institutional structures alike.

The residential application was especially popular, as it was seen as futuristic while remaining reminiscent of traditional masonry.
An example of glass block in a stairwell of NSA Bethesda Building 3. (Photographer: Samantha Driscoll, 2014)

A common application of a large expanse of glass block in a research facility at NSF Indian Head Building 601A. (Photographer: Thomas Wright, 2014)

The diffused light and privacy of a glass block panel at NSF Bethesda Building 3. (Photographer: Samantha Driscoll, 2014)
ENDNOTES The endnote numbers correspond to the numbers applied to the photographs within the visual guide.

Steel

8. Henry Hope & Sons Ltd., *Casements and Steel Windows* (Birmingham, England: Henry Hope & Sons Ltd., 1904), 57.

Corrugated Wire Glass

Glass Block

17. Pittsburgh Corning Corporation, “Pittsburgh Corning Glass Blocks: Illustrating Many and Varied Uses of PC Glass Block Construction,” 5.

33. Samantha Driscoll, Photographer, 2014.
34. Thomas Wright, Photographer, 2014.

35. Samantha Driscoll, Photographer, 2014.
Steel

Crittal Casement Window Company

David Lupton’s Sons Company

Detroit Steel Products Company

Fisher, Charles E.

Henry Hope & Sons Ltd.

Park, Sharon C.

Truscon Steel Company
Vautrot, Kerry

Wright, Thomas

Vautrot, Kerry

Corrugated Wire Glass

Hires Turner Glass Company

Pennsylvania Wire Glass Company

Sergeant Wire Glass Corporation

Vautrot, Kerry

Glass Block

Driscoll, Samantha

Owens-Illinois Glass Company

Pittsburgh Corning Corporation

1940 *PC Glass Blocks.* Pittsburgh Corning Corporation, Pittsburgh, Pennsylvania.

