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The coexistence of relatively large numbers of similar species of coral reef fish
has interested many ecologists. Sale (1977) proposed that coexistence was
facilitated because the mechanism of competition between species was essentially
a lottery for living spaces. Unfortunately, Sale’s (1977) paper did not contain a
precise mathematical description of what constituted a lottery. Subsequent work
by Chesson and Warner (1981) and Sale (1982) has provided two alternative
models of lottery competition, each with a different mechanism allowing coexist-
ence. Sale suggested that both his 1982 study and that of Chesson and Warner
(1981) argue that competitive exclusion may be less likely in lottery competition
systems than in systems with other mechanisms of competition. Here, I am
mainly concerned with evaluating this assertion. An analytical model based on
Sale’s simulation model is developed and used to determine which aspects of the
model are responsible for coexistence. I argue that an implicit (and unjustified)
assumption of only intraspecific competition in the larval stages is responsible for
coexistence of competitors in Sale’s model. The lottery aspects of the interaction
do not facilitate coexistence. I discuss Chesson and Warner’s 1981 model briefly;
here again, the lottery does not appear to be required to obtain coexistence.
Lottery models are not the only hypotheses for reef fish coexistence. Coexistence
via more traditional mechanisms of resource partitioning are favored by Robert-
son and Lassig (1980), Dale (1980), Anderson et al. (1981), and others. I conclude
with an evaluation of the various hypotheses which have been advanced to
explain coexistence in reef fish.

I. AN ANALYTICAL MODEL BASED ON SALE’S (1982) SIMULATION MODEL

Sale (1982, p. 140) states that, ‘“Simulation was chosen as a straightforward way
of obtaining information on the behavior of lottery systems.’’ If, however, one is
interested in determining which aspects of a model are essential to account for
some property (e.g., coexistence), analytical models are more useful, and at least
as straightforward as simulations.

* Present address: Department of Ecology and Behavioral Biology, University of Minnesota,
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In Sale’s model, the per capita death rate of each species is constant. The
number of species i adults dying in one time interval is equal to d;N;, where d; is a
constant, and N; is the adult population size of species i.

The number of spaces which become available for new adults in one time
interval is the sum of the deaths of all of the species (i.e., 3; d;N)).

The number of eggs produced by a given species in a unit of time is a linear
function of adult population size; i.e., E; = r;N;, where r; is the per capita egg
production rate of species i.

The number of mature larvae of species i is a function of the number of eggs
produced, and is given by M; = E;/(o;E; + B;) = r:Ni/(o;r;N; + B;). Here, o; and B;
are parameters which determine the amount of density dependence in larval
mortality. Note that the survivorship of the larvae of a given species is assumed to
be independent of the population density of other species’ larvae. Sale (1982)
refers to the number of eggs times their survivorship to the end of the larval period
as recruitment. For territorial reef fish, however, individuals must not only sur-
vive, but also settle successfully in order to recruit. Therefore, the function
relating M; and E; will be referred to as a larval survivorship function, rather than a
stock-recruitment relationship.

The expected number of recruits of species i during a given time interval is
given by the fraction of all mature larvae that are of species i times the number of
empty spaces which become available in that time interval. This is given by

9

In Sale’s model, recruitment is determined by randomly drawing a number (equal
to X; d;N;) of mature larvae from the pool of all mature larvae. Thus, the number of
new recruits of a specific species is given by a hypergeometric random variable. In
the model considered here, recruitment is set equal to the expectation of recruit-
ment in Sale’s model; it is therefore applicable to the case in which the number of
empty spaces is very large, and the total number of larvae is much greater than the
number of empty spaces. It is thus a deterministic analogue of Sale’s stochastic
model.

The change in the population density of adults of species i during one time
interval is simply recruitment minus death, and is therefore given by

AN, = FiN/(o;riN; + By) (ZdN) 1)

2 ()

It should be noted that this model is essentially equivalent to Chesson and
Warner’s (1981) deterministic overlapping generations model (their eq. [11]). The
only difference is that their model assumes that the number of mature larvae is
directly proportional to adult population density, rather than the density-
dependent larval survivorship assumed here.
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In addition to its deterministic nature, this system differs from Sale’s (1982)
model in several minor respects. (1) In the present model, unlike Sale’s, adult fish
have no maximum lifespan. In Sale’s simulations, very few individuals (a fraction
exp(—3) of recruits) reach the maximum age. This therefore has very little effect
on the behavior of the model. (2) Here, there is no time lag between settlement
and reproduction. Strictly speaking, this is unrealistic, but it allows one to ignore
adult age, simplifying the model considerably. Sale found that changing the age of
first reproduction in his simulations did not seem to affect his results except
insofar as it changed average adult fecundity. (3) The present model assumes that
there are enough larvae to fill all sites. The model therefore cannot be used to
describe population growth in an unsaturated environment. In all of Sale’s re-
ported simulation results, all sites became filled, and saturation was generally
achieved in 6 time units, while simulations were run for at least 100 units. Thus,
Sale’s model is also a description of population processes in a saturated environ-
ment. When there are abundant empty spaces, there is no competition in this
model, so this situation is of less interest.

It is possible to determine directly whether this model is a reasonable approxi-
mation to Sale’s by comparing its properties with those reported for the simula-
tion. This is done in the following section.

II. PROPERTIES OF THE MODEL

Two of the properties examined by Sale were: (1) the mean numbers of one
competitor as a function of its relative mortality or relative fecundity, and (2)
whether all of the competitors persisted for the duration of the simulation run.

A. Relative Abundances of Unequal Competitors

As shown by Chesson and Warner (1981, p. 928), two species in a lottery will
not change in relative abundance if the following relationship is satisfied:

Per capita production of mature larvae
of species i _ Per capita death rate of species i
Per capital production of mature larvae ~ Per capita death rate of species
of species j

This relationship can be used to derive expressions for the equilibrium abun-
dances of competitors. For the case examined by Sale (1982), there are two
identieal species, and a third which differs either in mortality or fecundity from the
first two. The expression for the equilibrium density of the odd species derived
using the above relationship is

— 2r1d0[30 - 2r0d1[31 + rld()()L()r()K

N
! r1r0(2a1d1 + ()L()do)

2

where zero subscripts denote parameters for the two equivalent species, and a
subscript 1 is used for the odd species. K is the number of adult sites. Substituting
the parameter values used by Sale in his figures 3 and 4 into expression (2) results
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in values very close to those found in the simulations. A lack of error bars in
figures 3 and 4 precludes statistical comparison. It is worth noting that, if mortality
rates of all species are equal, expression (2) is not affected by the absolute
mortality level. This seems to be true for Sale’s figure 4.

B. Conditions for Coexistence

A necessary condition for the persistence of a given species is that it be able to
increase when it is very rare and the other species are at equilibrium densities. As
Armstrong and McGehee (1980) have pointed out, this condition is not always
sufficient to guarantee coexistence, but numerical results suggest that it is a
sufficient condition in all of the special cases examined here. Thus, from equation

(1), species i will persist if
A
7

2t
7 oliN; + By

d; < G)

This condition is more easily interpreted by examining some special cases.

1. Equivalent competitors.—In this case, all species have the same population
growth parameters. If the total number of sites is denoted by K and the number of
resident species by s, condition (3) becomes

| < Bnt K )
Bn

This inequality is always satisfied; the model predicts coexistence of any number
of species. Sale observed coexistence in the majority of all simulation runs for
every set of parameters when the competitors did not differ in population growth
parameters.

2. Two unequal competitors.—An application of inequality (3) shows that if
species 1 is the inferior competitor, both species can coexist if

ri (oar, K + B2)
2 B1 '

This shows that a species which is inferior in all respects (smaller B, larger «,
larger d, and smaller r) can coexist with a superior competitor.

3. Orne inferior and n equivalent superior competitors.— Again applying condi-
tion (3), and denoting the inferior competitor as species 1, coexistence is possible
if

di < d, ®)

di _ np + ark
d2 HB ’
This shows that if per capita death rates are sufficiently similar, coexistence is

always possible. It also shows, however, that it becomes increasingly difficult for
an inferior species to exist as the number of species of superior competitors

(6)
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increases. The larger the number of species, the closer the invader’s death rate
must be to those of the superior residents. This occurs because increasing the
number of species increases the probability of a larva surviving, as a result of
decreased intraspecific competition among larvae. It should be noted from (6) that
large values of arK relative to n3 are favorable to coexistence. Most of Sale’s
simulations involved three species. He states (p. 141) that, ‘‘Qualitatively, results
are identical with other numbers of species competing.”” Expression (6) argues
against this assertion.

In the above examples, conditions on the death rates of coexisting competitors
were explored. Similar results may be obtained if fecundity is the parameter of
interest.

If one substitutes the parameter values reported by Sale in the above expres-
sions, coexistence is predicted in every case simulated. The extinctions which
Sale observed may be attributed to the demographic stochasticity arising because
of his small population sizes, because this is the only substantive difference
between the two models. Sale (1977) argued that unpredictability facilitated coex-
istence, but this particular type of uncertainty seems to make coexistence less
probable. Setting a equal to zero in any of the above inequalities confirms Sale’s
(1982) claim that coexistence cannot occur if larval survivorship is density inde-
pendent. Sale’s simulations all used a single functional form for determining larval
survivorship. The present model can be used to show that the coexistence of
equivalent competitors is possible for any larval survivorship function which
decreases as larval density increases. Chesson and Warner (1981) did not observe
coexistence in their deterministic model because it assumed density-independent
larval survival; if density-dependent larval survival were incorporated, their
model (for a constant environment) would be the same as the one analyzed here.

III. SUFFICIENCY OF DENSITY-DEPENDENT LARVAL MORTALITY AND THE NECESSITY
OF A LOTTERY FOR ACHIEVING COEXISTENCE

A. Sufficiency of Density-Dependent Mortality

Sale’s larval survivorship curve assumes that larval competition is totally
intraspecific (competition is being used in a broad sense, to include all sorts of
density-dependent mortality). No justification for the assumption is made. In fact,
the similar size of different species’ larvae and the lack of discrete reproductive
seasons suggest that larvae of different species should compete if there is
intraspecific competition as well. I know of no evidence suggesting extensive food
or habitat differentiation for the larvae of closely related reef fish species. If all
larvae are competitively equivalent, the larval survival probability should be
modified to 1/[a;(3;;N;) + B;]. In this case, it is easy to show that two equivalent
competitors cannot coexist in the lottery model. This complete larval competition
model is discussed in more detail in the following section. I will show that at most
two species can coexist at equilibrium in this case. Thus, the possibility of
multispecies coexistence depends on an assumption which may be implausible for
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coral reef fish. Density dependence per se is not sufficient to account for
coexistence.

B. Necessity of a Lottery

While the assumption of no interspecific larval competition may be unlikely for
coral reef fish, there may be other lottery systems for which this is reasonable. It
is therefore of interest to ask, if larval competition is solely intraspecific, is a
lottery required for coexistence? This question is somewhat difficult to answer
because of the many different descriptions of what constitutes ‘‘lottery competi-
tion”’ in Sale’s (1977, 1979, 1982) articles. The following elements seem to be
assumed: (1) Occupants of newly available spaces are determined by a random
process; (2) no species’ larvae have an advantage in obtaining empty sites; and (3)
once it has settled, an individual cannot be displaced. These are examined in turn.

1. The analytical model presented here does not have the element of stochas-
ticity in determining which larvae succeed in settling in empty places. A compari-
son of the analytical conditions for coexistence with simulation results showed
that the demographic stochasticity in Sale’s model actually renders coexistence
less likely.

2. The model presented here predicts that coexistence of two competitors is
possible even when the larvae of one species are better at finding or keeping
empty spaces. Unequal larval space-obtaining abilities are modeled in the same
manner as a fecundity advantage; the species with the superior site-acquisition
abilities would be assigned a larger » value, and it was shown above that species
with different » values could coexist. Chesson and Warner (1981) also noted the
equivalence of higher fecundity and greater space acquisition ability; both quan-
tities were incorporated into a single parameter (8*) in their model.

3. Equation (1) is consistent with a first come-first served mechanism of dis-
tributing territories. It is also consistent with any amount of exchange of ter-
ritories after settlement. All that is required is that each species eventually end up
with a number of territories proportional to its abundance in the pool of mature
larvae.

While these three conditions may describe reef fish larvae, none of them seems
to be an essential part of a lottery system. What is essential is that the expected
fraction of available adult living spaces obtained by the larvae of one species be
proportional to its larval abundance divided by the total larval abundance of all
species (where abundances may be weighted by competitive abilities). This is the
central feature incorporated into Chesson and Warner’s (1981) model. Sale sug-
gests that coexistence is easier to obtain in lottery competition than when adults
engage in exploitative competition. This could only be justified by comparing
similar models which differ in the presence or absence of a lottery. In fact, Sale’s
larval survival functions guarantee coexistence of equivalent competitors for any
type of adult competition. The larval competition assures that overall,
intraspecific competition will be greater than interspecific, a condition which
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results in the coexistence of otherwise equivalent competitors (e.g., Maynard
Smith 1974).

The above general argument does not show that lotteries cannot in some sense
make coexistence more likely than in systems with adult competition but no
lottery. The following simple model shows that a lottery is not always advanta-
geous for obtaining coexistence. Consider two species that are equivalent in all
respects except for mortality. The ‘‘ease of coexistence’’ will be measured by the
maximum ratio of mortality rates which will allow coexistence. If my version of
Sale’s lottery model applies, then the maximum ratio of mortalities is (from eq.
3D, di/d, < (B + arK)/B, where d; > d,. Consider an alternative model in which
larval survival curves are identical, but (1) there is no lottery because all surviving
larvae recruit, and (2) per capita egg production by adults is a linearly decreasing
function of total adult population density (i.e., per capita egg production is r[1 —
¢(N1 + N,)]). This could describe a situation in which adults compete for food
with total overlap in food utilization. The general equation for the change in
population density of adults of species i is

(1 - e 2NN,

ar(l _p :N,.) N+ B

In this case, the condition for invasion by the inferior competitor when the
superior competitor is at equilibrium is simply d; < (r — rcN)/B, where N is the
equilibrium density of the superior competitor. N may be found by solving a
quadratic equation. All that need be noted here, however, is that if ¢ is sufficiently
small, the inferior competitor can always invade. (d; must be less than 7/ to
permit existence of the inferior competitor alone.) Also, note that by choosing 8
much larger than arK, conditions for coexistence in the lottery model become
very restrictive; the death rate of the inferior competitor must be very close to that
of the superior to allow coexistence (see inequality [S]). Results similar to the
above can be obtained using other alternative competition models. The conclusion
is that the lottery need not result in a lower probability of competitive exclusion
than a similar system with a different form of adult competition.

AN,' = —diN,' + (7)

IV. A LOTTERY MODEL WITH NO LARVAL RESOURCE PARTITIONING

In the previous section I suggested that the lottery model might be more
plausible for reef fish if it incorporated interspecific larval competition. I also
presented a larval survivorship function which did this. Here I show that, if there
is no larval resource partitioning, this model allows coexistence of two competi-
tors, but no more.

A. Coexistence of Two Competitors

The model in this case is identical to that summarized by equation (1), except
that larval survivorship is given by 1/(o;(3; r;N;) + B)).
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The criteria for each of two species to be able to increase when the other is at
equilibrium are as follows:

ﬂ<ﬂ[a2r2K+Bz] ﬂ>ﬁ[a2r1K+Bz]
d, 1| ouyrK + B d,  roynK + By

No pair of death rates can satisfy both inequalities unless the following condition
is satisfied

(022K + B)(ori K + B1) > (ar K + Bo)(ar K + By). )]

It follows that a necessary criterion for coexistence is that the species with the
higher fecundity (r) must have a larval survivorship which decreases more rapidly
with population density (a larger o/B). The high fecundity species can invade a
system with the high larval survivorship species because larval densities are
relatively low when the latter is at equilibrium. The high larval survivorship
species can invade when the high fecundity species is at equilibrium, because the
high larval densities give it the advantage. It is worth noting that it is possible to
have coexistence even if d; = d, = 1, so that overlapping generations are not
required.

The above result might seem to contradict the competitive exclusion principle
(Armstrong and McGehee 1980), but it actually does not, because there are two
resources in the system; the resource which determines larval survival, and the
adult living spaces, apportioned by the lottery. Coexistence requires that there be
both larval and adult competition.

The effects of parameters upon the ease of coexistence differ considerably from
the case of no larval interspecific competition examined previously. The range of
d,/d, values yielding coexistence may be found directly from the invasion criteria
given above. Differentiating this range with respect to K shows that increasing K
favors coexistence (i.e., it increases the range of d;/d, values which yield coexist-
ence) for all values of K less than B;/a;V rr,; for greater values of K, increasing
the number of adult sites decreases the range of mortality ratios permitting
coexistence. Multiplicative increases in the a;/B; or the r; have the same effect as
increasing K; coexistence is favored until K = B;/a;V r1r,. Above the value of ar
or below the value of B specified by this equation, further changes will make
coexistence less likely.

@®)

B. Three or More Competitors

As one would expect from the competitive exclusion principle, it is impossible
to have three species coexist at fixed densities with no larval or adult resource
partitioning. This statement can be justified nonrigorously as follows. Any species
may be characterized by a curve relating relative fitness to total larval population
density. At equilibrium, relative fitnesses must be equal. It is extremely unlikely
(and not evolutionarily stable) for the three curves for three different species to
intersect at a single point. Thus, coexistence would be prohibited. The same
argument may be made for any larger number of species. Appendix A shows that
it is impossible to find three species such that all of the following conditions are
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satisfied: (1) Species 1 can invade the sukcommunity consisting of species 2 and 3;
(2) species 2 can invade the subcommunity of 1 and 3; and (3) species 3 can invade
the subcommunity with 1 and 2.

C. Partial Resource Partitioning

The two models discussed above clearly represent extreme cases in that they
assume either no larval resource partitioning or complete partitioning. Both as-
sume complete overlap of adults in habitat utilization, an assumption which is
contradicted by most data on reef fish. A wide variety of partial overlap models
are possible, and most real lottery systems are likely to be best described by such
models. In general, sufficient resource partitioning in either stage of the life cycle
will allow coexistence of competitors in a constant environment.

V. A NOTE ON CHESSON AND WARNER’S (1981) MODEL

Unlike Sale’s simulation, Chesson and Warner’s model assumes that there is
environmentally caused variation in birth rates. This variation is required to
obtain coexistence of competitors with no adult resource partitioning. As noted
before, they also assume density-independent larval survivorship. As in the case
of Sale’s model, however, the lottery mechanism itself is not required for coexist-
ence. Chesson (1983) and Abrams (1984) have both extended Chesson and War-
ner’s (1981) analysis to nonlottery models. Abrams (1984) shows that environmen-
tal variation in per capita resource consumption rates can allow the coexistence of
two or more species on a single resource under quite general conditions.

VI. THEORY AND EVIDENCE FOR VARIOUS HYPOTHESES EXPLAINING REEF FISH
COEXISTENCE

Here I assess what the preceding analysis implies regarding hypotheses ad-
vanced to explain the coexistence of coral reef fish.

A. Coexistence resulting from a lottery with environmentally caused variation
in birth and death rates.—This is the mechanism proposed by Chesson and
Warner (1981). It should be noted that they do not claim that this mechanism is the
main one promoting coexistence in reef fish. Unfortunately, there is insufficient
data on the variability and cross-correlations of birth and death rates in reef fish to
adequately assess the importance of this effect. The fact that some variability in
recruitment is observed for most fish species (Larkin 1978) does suggest that this
may contribute to coexistence.

B. Coexistence resulting from larval resource partitioning.—This is essentially
the hypothesis of Sale (1982), although he did not recognize it as such. There is, to
my knowledge, no empirical support for two aspects of the model.

(1) Density-dependent mortality of larvae. It is common to assume density-
dependent mortality in fisheries models (Cushing 1973; Larkin 1978), but the
evidence for such density dependence is relatively weak (Larkin 1978). In addi-
tion, fisheries models are generally based on observations on temperate species
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which are nonterritorial, and whose population processes may differ greatly from
those of coral reef species. Sale (1982) argues that linear stock-recruitment rela-
tionships have never been observed, so larval survivorship could not be density
independent. If one were to determine a stock-recruitment relationship for a coral
reef fish species, however, recruits would be censused after settlement (recruits
are settled juveniles; not old larvae). Because of the limited number of available
spaces, the stock-recruitment relationship would be nonlinear and would have an
upper asymptote even if larval survivorship were independent of density. The
evidence for the density-dependent survivorship required by the model is lacking.
Stock-recruitment relationships are probably very difficult to measure for reef
fish. Given larval periods of at least 10 days (Sale 1979), the stock population
producing potential recruits for a given locale is likely to be too large to be
effectively censused.

(2) Larval resource partitioning. Sale’s model requires not only density-
dependent larval survivorship, but it requires complete larval resource partition-
ing. Evidence for any sort of larval resource partitioning seems to be lacking.

C. Coexistence resulting from adult habitat or food partitioning.—There is no
theoretical problem in accounting for the coexistence of a number of species in
one area if there are other areas in which each species occurs alone or has some
advantage over other species, and larvae from the exclusive or semiexclusive
areas can reach the areas in which species are sympatric. Theoretical support for
these statements can be derived from essentially any model of the competitive
process. There is strong empirical support for habitat partitioning in reef fish (Dale
1980; Robertson and Lassig 1980; Anderson et al. 1981). Partitioning of food
resources may also occur in some guilds (Anderson et al. 1981). The fact that there
are some habitats within which there is relatively little partitioning (Sale 1979)
cannot be used to argue that none occurs on a larger scale. Resource partitioning
can contribute to coexistence in nonequilibrium as well as equilibrium models
(May 1973). Therefore, evidence of changing densities or species compositions
cannot be used to argue against the resource partitioning hypothesis (as does Sale
[1979)).

Given the lack of knowledge of larval biology, it would be premature to
conclude that the mechanisms represented by the first two hypotheses do not
contribute to reef fish diversity. However, there is as yet no evidence that such
mechanisms are required to account for that diversity.

SUMMARY

The main goal of this analysis has been to evaluate Sale’s (1982) suggestion that
competitive exclusion was less likely in lottery competitive systems than in those
having other mechanisms of competition. An analytical lottery model based on
Sale’s (1982) simulation was developed and used to show that the presence of
totally intraspecific competition in the larval stages was responsible for the coex-
istence of the species in the model. This assumption could allow coexistence for
any possible mechanism of adult competition. A model incorporating the more
likely assumption of equal inter- and intraspecific larval competition allows at
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most two species to coexist in a constant-environment lottery model. Although
some types of environmental variability promote coexistence in the lottery model
(Chesson and Warner 1981), analogous types of variability promote coexistence in
nonlottery models (Chesson 1983; Abrams 1984). Available evidence for territo-
rial coral reef fish most strongly supports an explanation of coexistence based on
resource partitioning over other possible explanations.
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APPENDIX A

STABILITY OF BOUNDARY EQUILIBRIA IN A THREE-SPECIES SYSTEM WITH INTERSPECIFIC
LARvVAL COMPETITION

For a three-species community to have a globally stable equilibrium point or limit cycle,
it is necessary that each species be able to increase when the other two are present at
equilibrium (i.e., the boundary equilibria must be unstable). Determining the invasibility of
two-species communities requires that one determine equilibrium population densities. For
the model described in section IV, A, the expression for the equilibrium density of species
1 when 1 and 2 are present together may be found using Chesson and Warner’s (1981)
equilibrium relationship given in Section II, A. This results in

rdB — rzdlﬂ + rirydyon K — r%dlalK
r1r2a1d1 - r%aldl - r%dzotz + r1r2a2d2

N1=

assuming B; = B, = Bs.

N, is simply K — Nj. Analogous expressions may be found for the other two-species
subcommunities. The condition for species 3 to increase when it is rare and the other two
are at equilibrium is

43 13 aa(nNy + Ny + B

di  rp o3(riNy + Ny + B

Substituting for N; and N, and simplifying gives

didyry (o) — ay)
d; < . (A1)
> T rdy (s — o) + rady (0 — o)

Similarly, the condition for species 1 to invade a 2,3 subcommunity is

dydz (ap — a3)
di < riaxas (ap 3 ) A2
' hds (0 — aa) + rads (a; — o) (a2)

For 2 to invade a 1,3 community, it is necessary that

did; (0 — a3)
d < 2015 — % : A3
2T ds (ar — o) + dirs (g — @) 43)

Expression (A3) may be rearranged to obtain conditions on d; or ds. It will be seen that
these are simply expressions (A1) and (A2) with the inequality reversed. This contradiction
shows that at least one boundary equilibrium must be stable; three species cannot coexist.
(It should be noted that the last step assumes that r; > r, > r; and that a; > a, > a3. The
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relative magnitudes of the r; can be chosen arbitrarily. However, the o; must have the same
ordering if the two species subcommunities are to exist [see inequalities (8) in the text].)
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