An Overview of the Remedial Process for Munitions Response Sites

J. Jackson, USACE EM CX
J. Salisbury, USACE EMCX

Defense Environmental Restoration Program Forum
November 2023
This presentation will describe the basics of munitions response.

Topics will include:

- General concepts
 - Project team and initial planning
 - Conceptual site model (CSM) and data quality objectives (DQOs)
- Review of steps for munitions response
 - Primary Assessment (PA) through Long-term Management (LTM)
- “Bonus topics”
 - Geophysical investigation and Visual Sample Plan (VSP)
 - Risk Management Methodology (RMM) overview
MUNITIONS RESPONSE PROCESS

REMEDIAL RESPONSE

1. Preliminary Assessment
 - Might there be a problem?
2. Site Inspection
 - Do we really have a problem?
 - MEC/MC confirmed potential?
3. Is there an imminent threat?
 - NO
 - YES
 - Does something need urgent action?
4. Remedial Investigation
 - How big is the problem?
5. Feasibility Study
 - What are the cleanup options?
6. Proposed Plan
 - What do the stakeholders think?
7. Record of Decision/DD
 - This is what we’re going to do…
8. Remedial Design
 - Let’s fine tune this a bit…”
9. Remedial Action
 - It’s cleanup time!
10. Long-Term Management
 - Keep an eye on things…

If so, deal with it!
TCRA (AM)

NO

-project closeout

NTCRA (AM & EE/CA)

Timeframe < 6 months?

Public Review

REMOVAL RESPONSE
IP ALL STARTS WITH THE RIGHT TEAM…

USACE TEAM

1. Project Manager
2. Technical Lead
3. OESS
4. Geophysicist
5. Chemist
6. Risk Assessor
7. Biologist/Ecologist

RESPONSIBILITIES

- Lead PDT; Scope, Schedule, Budget, Metric Responsibilities
- Technical Team Task Manager, Supports District PM
- QA for all things Munitions and Safety
- QA for all things Geophysics
- QA for all things Chemistry
- QA for all things Risk
- QA for all things Biological/Ecological

OTHER TEAM MEMBERS

1. Regulator
2. Landowners
3. Contractor (post-award)

- Assist Lead Agency in DQO development
- Provide Regulatory Perspective
- Provide perspective on land use and acceptable activities for execution
- Prepares remaining MR-QAPP worksheets
Before we start a project, it’s essential to answer some key questions –
- What do we know about the site?
- What is the problem we are trying to solve?
- What are we trying to do about it?
- What limitations are we working under, if any?

To answer these questions, we need to start thinking about –
- Conceptual site model (CSM)
- Data quality objectives (DQOs)

“If you don’t know where you want to go, how will you know when you get there?”
What is the CSM?

- The most current description of the site
 - How did MEC/MC get there?
 - Where are MEC/MC located?
 - What types of MEC/MC are present?
 - What is the site used for now?
 - Who are the receptors and what do they do there?

Forms basis for understanding the site and communication with stakeholders

- The initial CSM assists in developing investigation strategy and Data Quality Objectives (DQOs)
- The updated CSM describes the results

- Land use
- Topography
- Vegetation
- Types of munitions
- MEC amount/distribution
Initial CSM Assumptions for an MRS
– Suspected locations of HUAs and LUAs
– Possible extent and size of contaminated areas
– Known/suspected type, depth, and amounts of MEC
– Current and future land use activities
What is known will change as we move through the process

The CSM is the **core** of the project

The beginning of each phase will consider the initial CSM, while a final step will be updating the CSM to reflect the results
DATA QUALITY OBJECTIVES (DQOs)

A DQO…
- Summarizes project goals & data needs
- Tells us *when the project is done*

More specifically, the DQO explains when we have project data of
- The right type(s)
- Sufficient quantity
- Adequate quality

… to support defensible project decisions & revisions to the CSM
- *So, DQOs MUST be measurable!*

Similar to the CSM
- Forms a basis for communication with stakeholders
- Text supported by tables, figures, & graphics
1. Define the problem
 - What problem do we need to address?

2. Identify the decision to be made (goals)
 - What questions do we need to answer to address that problem?

3. Identify the inputs to the decision
 - What data do we need to answer those questions?
 - Consider ALL data

4. Define boundaries of the study
 - What are the limitations on collecting those data?

5. Develop decision rules
 - How are we going to use the data to make our decisions?

6. Specify performance criteria
 - How good do the data need to support those decisions?

7. Optimize the design
 - Considering all of the above, how are we going to do this?

Notice how these steps follow each other logically
- Approach MUST address data needs and limitations!
- Don’t forget that when you’re putting them together

PRELIMINARY ASSESSMENT

Might there be a problem?
MUNITIONS RESPONSE PROCESS

MUNITIONS RESPONSE PROCESS

REMEDIAL RESPONSE

1. Preliminary Assessment
 - Might there be a problem?

2. Site Inspection
 - Do we really have a problem?

3. MEC/MC confirmed potential?
 - No
 - Yes
 - Does something need urgent action?
 - No
 - Project/Property Closeout
 - Yes
 - Remedial Investigation

4. Is there an imminent threat?
 - No
 - Yes
 - Timeframe < 6 months?
 - No
 - Remedial Action
 - Yes
 - Remedial Design

5. Feasibility Study
 - How big is the problem?
 - What are the cleanup options?

6. Proposed Plan
 - What do the stakeholders think?

7. Record of Decision/DD
 - This is what we're going to do...

8. Remedial Design
 - Let's fine tune this a bit...

9. Remedial Action
 - It's cleanup time!

10. Long-Term Management
 - Keep an eye on things...

REMOVAL RESPONSE

If so, deal with it!

TCRA (AM)

NTCRA (AM & EE/CA)

Public Review
The PA is the first step in the remedial process described in the NCP

The purpose of the PA is to:

– Eliminate properties from further consideration that pose little or no threat to public health or the environment
– Determine if there is any potential need for removal action
 • i.e., there’s an imminent threat
– Set priorities for site inspections (SIs)
– Gather existing data to facilitate later evaluation of the release pursuant to the Hazard Ranking System (HRS) conducted by EPA
– Collect data to complete the Explosives and Chemical Weapons (EHE/CHE) modules of the Munitions Response Site Prioritization Protocol (MRSPP)
Elements:

- Review historical records related to:
 - DOD use of land
 - Non-DOD land use and property ownership
 - Use of military munitions
 - Suspected releases
- Possible limited site visit and/or interviews
- If MEC are suspected to be present, recommend approval of MMRP project
SITE INSPECTION

Do we really have a problem?
MUNITIONS RESPONSE PROCESS

REMEDIAL RESPONSE

1. Preliminary Assessment
 - Might there be a problem?

2. Site Inspection
 - Do we really have a problem?

3. MEC/MC confirmed potential?
 - YES
 - Is there an imminent threat??
 - YES
 - How big is the problem?
 - YES
 - Remedial Investigation
 - How big is the problem?
 - YES
 - Remedial Design
 - This is what we’re going to do...
 - NO
 - Remedial Action
 - It’s cleanup time!
 - NO
 - Remedial Action
 - It’s cleanup time!
 - NO
 - Remedial Design
 - Let’s fine tune this a bit...
 - NO
 - Remedial Action
 - It’s cleanup time!
 - NO
 - Remedial Action
 - It’s cleanup time!
 - NO
 - Project/Property Closeout
 - Keep an eye on things...

3a. Timeframe < 6 months?
 - YES
 - Remedial Investigation
 - How big is the problem?
 - YES
 - Remedial Design
 - This is what we’re going to do...
 - NO
 - Remedial Action
 - It’s cleanup time!
 - NO
 - Remedial Action
 - It’s cleanup time!
 - NO
 - Proposed Plan
 - What do the stakeholders think?
 - YES
 - TCRA (AM)
 - If so, deal with it!
 - NO
 - NTCRA (AM & EE/CA)

REMOVAL RESPONSE
SITE INSPECTION (SI)

The SI is not intended as a full-scale study of the nature and extent of contamination or explosive hazards

The objectives of the SI are to:

– Eliminate from further consideration those releases that pose no significant threat to public health or the environment
– Determine potential need for removal action
– Collect data, as appropriate, to characterize release for effective and rapid initiation of remedial investigation and feasibility study (RI/FS), and
– Collect or develop additional data, appropriate for Hazard Ranking System (HRS) scoring by EPA
– Collect data to update the EHE/CHE modules and complete the Munitions Constituents (HHE) module of the Munitions Response Site Prioritization Protocol (MRSPP)
SITE INSPECTION (SI), CONT’D.

Determine presence or absence of MEC/MC

- Limited fieldwork
 - No need to evaluate extent
 - Usually no geophysics, but not prohibited
- MD typically considered to be indicative of MEC
- Determine if removal action is needed to address imminent threats to human health or the environment

Produce initial conceptual site model (CSM)
REMOVAL ACTION

Dealing with an imminent threat
MUNITIONS RESPONSE PROCESS

REMEDIAL RESPONSE

1. Preliminary Assessment
 - Might there be a problem?
2. Site Inspection
 - Do we really have a problem?
3. MEC/MC confirmed potential?
 - NO
4. Remedial Investigation
 - Is there an imminent threat?
 - NO
5. Feasibility Study
 - Timeframe < 6 months?
 - YES
 - TCRA (AM)
 - NO
6. Proposed Plan
 - NTCRA (AM & EE/CA)
7. Record of Decision/DD
 - This is what we’re going to do…
8. Remedial Design
 - Let’s fine tune this a bit…
9. Remedial Action
 - It’s cleanup time!
10. Project/Property Closeout
 - Keep an eye on things…

REMOVAL RESPONSE

- If so, deal with it!
- If not, go to Proposed Plan.
REMOVAL ACTION

Definition –
– A short-term or immediate action taken to address the presence and/or releases of MEC or MC that require expedited response due to threats to human health and/or the environment

Removal actions are interim actions
– Do not have to involve physical removal
 • May include interim LUCs only

Can be time critical or non-time critical
Time Critical Removal Action (TCRA)
- Less than 6-month planning period
- Requires:
 - Action Memorandum
 - Explosives Safety Submission (ESS)
 - Uniform Federal Policy – Quality Assurance Project Plan (UFP-QAPP)
 - Community Relations Plan (CRP)

Non-Time Critical Removal Action (NTCRA)
- More than 6-month planning period
- Requires
 - Engineering Evaluation/Cost Analysis (EE/CA)
 - Explosives Site Plan (ESP)
 - Action Memorandum
 - Explosives Safety Submission (ESS)
 - UFP-QAPP
 - Community Relations Plan (CRP)
How big is this problem?
MUNITIONS RESPONSE PROCESS

REMEDIAL RESPONSE

1. **Preliminary Assessment**
 - Might there be a problem?

2. **Site Inspection**
 - Do we really have a problem?

3. **MEC/MC confirmed potential?**
 - NO

4. **Is there an imminent threat??**
 - NO

5. **Remedial Investigation**
 - How big is the problem?

6. **Feasibility Study**
 - What are the cleanup options?

7. **Record of Decision/DD**
 - This is what we’re going to do...

8. **Remedial Design**
 - Let’s fine tune this a bit...

9. **Remedial Action**
 - It’s cleanup time!

10. **Long-Term Management**
 - Keep an eye on things...

11. **Project/Property Closeout**

12. **Timeframe < 6 months?**
 - NO

13. **If so, deal with it!**

14. **TCRA (AM)**

15. **NTCRA (AM & EE/CA)**

REMOVAL RESPONSE

16. **Proposed Plan**
 - What do the stakeholders think?

17. **Public Review**
The objective of the RI is to gather information necessary to make an informed risk management decision

- Identify hazard characteristics (nature)
- Determine extent (lateral & vertical) of hazard
- Document exposure pathways in terms of land use activities and frequency
- Conduct an institutional analysis to support potential remedial alternatives

In short…

- Collect data to assess how serious the problem is and support plans for cleaning it up
Identify/describe

– High Use Areas (HUA)
 • MEC-contaminated areas with elevated risk
 • Formerly Concentrated Munitions Use Areas (CMUAs)

– Low Use Areas (LUA)
 • Areas with limited suspected MEC contamination

– No Evidence of Use (NEU) Areas
 • Areas with negligible or no suspected MEC contamination

– Types of MEC present (nature)
 • Types of munition and suspected condition (UXO/DMM)

– Depth profiles for MEC across the MRS
 • “Vertical” Conceptual Site Model

– Detailed current and future land use data
 • Physical site characteristics
WHAT CAN WE SAMPLE FOR?

Site characteristics
- Anomaly density and MC concentrations
- Presence of MEC/MD and MC
- Types of MEC/MD and MC
- Depths of MEC/MD

Use data to determine
- Existence and location of HUAs, LUAs, and NEUs
- Depth/distribution of MEC in HUAs and LUAs
 - Vertical profile
- Nature and extent of MC contamination

A major data collection method for MMRP RIs is geophysical surveys…
LET’S TAKE A MOMENT TO DISCUSS...

Geophysical Investigations, Advanced Geophysical Classification, and Visual Sample Plan
Geophysical investigation is a critical part of MEC investigation & remediation

– During characterization
 • Type of problem
 • Extent of problem
– During Removal/Remedial Action
 • Detection and Selection

Decisions affect:

– Total project costs
– The quality of the removal/remedial action
– Future public safety
WHAT IS THE RISK OF NOT CONDUCTING SOUND GEOPHYSICAL INVESTIGATIONS?

Poorly planned or poorly executed geophysical investigation will produce:
- Undocumented, unusable or misleading information
- Indefensible predictions and conclusions

Erroneous conclusions can result in:
- Recurring site revisits and expenses
- Poor public and professional reputation
- Safety hazard
MOU Mandates

- **A permanent record including:**
 - Digitally recorded geophysical data, georeferenced to the maximum extent practical
 - A clear audit trail of pertinent data, analysis, and decisions

- **Full project costs must be considered:**
 - All costs for activities that flow from the initial geophysical investigation must be considered (these costs can be more than the actual geophysical investigation).

DoD and EPA Management Principles for Implementing Response Actions at Closed, Transferring, and Transferred (CTT) Ranges 7MAR2000

DERP Manual

- **Administrative Record must include:**
 - Data gathered to characterize an MRS (including geophysical sensor data that is digitally recorded and geo-referenced) accompanied by a clear audit trail of pertinent analyses and resulting decisions.

- **When analog is used:**
 - “Where collecting digitally recorded, geo-referenced, geophysical sensor data is impractical or unwarranted, the installation shall forward a memorandum documenting the determination to the DoD Component Secretariat; the memorandum shall be included in the AR.”

DERP Manual Chapter 7(a)(1)(a)(3)(c)
Audible output or meter deflection is interpreted in real time by the instrument operator

- Commonly known as “Mag & Flag” or “Mag & Dig”
- Uses either magnetometer or EMI instrument
- Teams sweep lanes 3-5 feet wide using visual navigation

Data collection

- No recorded data
- No geolocated data
ANALOG SYSTEMS – PROS AND CONS

Pros
– Can be used in any terrain and vegetation where an operator can safely walk

Cons
– No recorded data = no auditable decision record
 • Coverage
 • Anomaly selection
– Performance depends on human factors that can’t be measured
– Lower detection capability
– No information about the source of the anomaly – requires digging
– Difficult to perform QC
Digital sensor output is recorded for subsequent analysis

- Uses either magnetometer or EMI instrument

Includes

- GPS to allow geolocation and navigation
- Digital recording of geolocated sensor output

Supports

- Principled anomaly selection based on targets of interest and site conditions
- Quality checks on data
DGM – PROS AND CONS

Pros
– Reliable, robust, efficient data collection
– Well-characterized detection capability
– Widely available
– Data record for QA/QC and reanalysis

Cons
– Not suitable for extreme terrain and vegetation
– Provides little information about the source of the anomaly - requires digging for source identification and depth
– Lower spatial resolution than AGC
High resolution signal detected by an advanced sensor is recorded digitally

- Uses electromagnetic induction
- “Illuminates” the target and measure its response from multiple directions

Analysis provides information related to

- Size and shape of object
- Material properties
Polarizabilities *do not change* with item depth or orientation.
The high-resolution signal tells us a lot about the source

- Munitions “look like” long, slender, symmetric objects
- Fragments “look” asymmetric
- Large objects have stronger responses than small objects
AGC – PROS & CONS

Pros
– Provides information about size, shape, material properties & depth of sources – requires less digging
– Higher spatial resolution
– Complete data record for QA/QC
– Well-characterized system: 25 demonstrations in a wide variety of site conditions
– Contractors using AGC must be accredited

Cons
– More expensive data collection and analysis
– Slower survey speed
– Not suitable for extreme terrain and vegetation
– Requires specialized training

Only AGC can provide this information without digging!
WHAT CAN THESE GEOPHYSICAL SENSORS DETECT?

Depends on
- Signal – the response of the sensor to the object you want to detect
- Noise – variations in sensor response due to other factors such as geology, motion, interference, and so on

Signals from common munitions are well characterized for EM61 DGM and AGC
- Quantitative understanding of depth to which specific munitions can be reliably detected in the noise environment at a site
Visual Sample Plan is a statistical sampling design tool for environmental problems
- Developed by Pacific Northwest National Lab
- Supported by multiple government agencies including, DOE, EPA, DoD, DHS, and CDC

Multiple modules for different sampling requirements

Focus today on the Munitions Response Module:
- Locating and characterizing areas on a site with a high density of metal that could be target areas
- Mostly munitions debris (MD) and range related debris (RRD)
Plan transect sampling to **traverse** and **detect** a target area of specified size and anomaly density

Analyze transects to
- Locate high density areas
- Estimate size and anomaly density
WHAT DOES VSP DO?

Plan transect sampling to traverse and detect a target area of specified size and anomaly density

Analyze transects to
– Locate high density areas
– Estimate size and anomaly density
SELECT PROBABILITY OF DETECTING TARGET AREA

Target Detection Performance

Bkg Density = 35, Average Target Density

100% 95%

Probability of Detection

Parallel Transect Spacing (meters)

X=160 Y=1.000

75 anomalies/acre above bkg
WHAT IS “CRITICAL DENSITY”?

- Background Mean = 35/acre
- Target Area Peak = 150/acre
 Edge = 10/acre above background

![Graph showing frequency distribution of anomalies per acre with background and target area annotations.]
BACKGROUND ANOMALIES IN OUR EXAMPLE
EFFECT ON HD AREA SIZE
AND NOW, BACK TO THE REMEDIAL INVESTIGATION...

How the geophysical and other data collected supports the RI
OTHER CHARACTERIZATION DATA

Land use
– Onsite structures?
– Who is onsite and what do they do?
– Will shovels go in the ground? How deep?
– Are there development plans?

Number of MEC encounters over the years

Site features
– Topography, vegetation

Natural resources

Cultural resources
POTENTIAL RI RESULTS

Horizontal Profile

Vertical Profile

- MEC (5 items found)
- MD (29 items found)
Baseline risk assessments should adhere to the requirements of CERCLA and the NCP

MEC Risk Assessment
- No accepted quantitative method available to assess risk from MEC hazards
- Qualitative methods consider MEC hazard, severity of outcome, and likelihood of occurrence

MC Risk Assessment
- Well-established quantitative methods
 - Risk Assessment Guidance for Superfund (RAGS)
RISK MANAGEMENT METHODOLOGY OVERVIEW

RMM is the recommended method

– Decision Logic to Address Risks Associated with Explosive Hazards, and to Develop RAOs for MRSs
 (i.e., Risk Management Methodology)

 • Established as interim guidance on 3 Jan 2017 for a two-year trial period
 – Has been extended to Mar 2022 (and beyond…)

 • Purpose
 – RI baseline risk assessment
 – Supporting RAOs and development of remedial alternatives

 • Uses decision matrices to guide PDTs through risk management process

 • Now being updated by Office of the Secretary of Defense (OSD)
 – Coming **REALLY** soon

Baseline MEC risk assessment

Risk Scenarios support RAOs and development of alternatives

Site Inspection
Remedial Investigation
Feasibility Study
Proposed Plan
Record of Decision
Remedial Action
Why use the RMM?

- Consistent tool to support risk-based decisions at MRSs
- Evaluates MEC exposure pathway

Source → Encounter → Interaction → Incident

and the likelihood receptors will

• Encounter MEC
• Interact with MEC
• Experience a harmful incident

- Considers site-specific factors that influence risks from MEC exposure
 • Uses them to guide the PDT’s risk management decisions
When to use the RMM?
- Remedial Investigation (RI)
 - Framework for the baseline MEC risk assessment

Where is RMM information needed?
- Feasibility Study (FS)
 - Risk scenarios help develop remediation goals
 - Risk scenarios help identify needed outcomes from different alternatives

RMM is NOT a “black box”
- Inputs do NOT drive precise outputs
- PDTs must use the RMM to
 - Facilitate discussion
 - Build consensus on risk management decisions
Considers three primary risk factors

– Likelihood of Encounter (Matrix 1)
 • Likelihood of MEC presence
 • Extent of exposure
– Likelihood of Interaction (Matrix 2)
 • Likelihood of encounter (from Matrix 1)
 • Frequency of activities in interaction zone
– Risk of Harmful Incident (Matrix 3)
 • Likelihood of interaction (from Matrix 2)
 • MEC Code
 – Based on munitions severity and sensitivity

They help the project team draw conclusions

– Based on the three factors, is overall site risk acceptable or unacceptable?
FEASIBILITY STUDY

What are the cleanup options?
The primary focus is to ensure that appropriate remedial alternatives are developed and evaluated to present decision-makers with options
– FS does NOT select the remedy

The general process includes:
– Assessing general remedial action process options and technologies
– Assembling these process options and technologies into remedial alternatives
– Evaluating the alternatives for their suitability to address the risks, and other factors (including cost)
OVERALL FEASIBILITY STUDY PROCESS

1. Establish RAOs
 - “What is the goal for the site?”

2. Develop General Response Actions
 - “What general options are there?”

3. Identify/Screen Technologies
 - “What are the viable technologies or process options?”

4. Combine Technologies into Remedial Alternatives
 - “What combination of technologies or process options might work?”

5. Screen Alternatives
 - “Will they really work?”

6. Conduct Detailed Analysis of Alternatives
 - “How do they compare with each other?”
There are seven General Response Actions (GRAs):

1. Treatment actions
2. Containment actions
3. Institutional actions
4. Treatment and containment actions
5. Treatment and institutional actions
6. Containment and institutional actions
7. Treatment, containment, and institutional actions

Each GRA is composed of one or more process options and/or technologies:

- **Treatment actions** can include methods of MEC detection, excavation, and demolition.
- **Containment actions** can include fences and other barriers, including covers.
- **Institutional actions** can include hazard notification and education, as well as activity or use restrictions.

#4-7 are combinations of #1-3
DEVELOP REMEDIAL ALTERNATIVES

Project team will design multiple remedial alternatives
- Must all be designed to achieve the Remedial Action Objective (RAO)
 - Except the No Action alternative, which has to be evaluated
 - At minimum, alternatives must also include
 - An alternative that uses LUCs (*not necessarily LUCs only*)
 - An alternative that allows for unlimited use/unrestricted exposure (UU/UE)
 - Ideally, there should be more than just those
 - Look at a range of possible options

Details for each alternative should **not** be generic
- Each one should be site-specific and account for details such as technology requirements, site limitations, and stakeholder issues
- These details may become SPECIFIC CLEANUP GOALS (if the alternative is selected)
Remedial alternatives may be screened
Three initial screening criteria:

- Implementability
 - Feasibility of alternative
- Cost
 - Considers both capital and O&M costs
- Effectiveness
 - How well it protects human health, safety, and the environment
 - How well it reduces toxicity, mobility and volume of contaminants/contaminated media

Screening is aimed at reducing a long alternatives list (>10) to a more manageable list (5-10)

- It should not reduce the list to just one remedial alternative
- It might not be needed if the list of alternatives is already <10
DETAILED ANALYSIS OF ALTERNATIVES

Retained remedial alternatives are then evaluated against nine CERCLA Criteria:

1. Overall protection of human health and the environment (meet RAO?)
2. Compliance with ARARs (unless waived)
3. Long-term effectiveness and permanence
4. Reduction of toxicity, mobility or volume through treatment
5. Short-term effectiveness
6. Implementability
7. Cost
8. State acceptance
9. Community acceptance

Feasibility Study does NOT select a remedial alternative!
PROPOSED PLAN

What do the stakeholders think?
1. Preliminary Assessment
 - Might there be a problem?

2. Site Inspection
 - Do we really have a problem?

3. MEC/MC confirmed potential?
 - Yes
 - Remedial Investigation
 - How big is the problem?
 - No
 - Site Inspection

4. Is there an imminent threat?
 - Yes
 - Feasibility Study
 - What are the cleanup options?
 - No
 - Remedial Investigation

5. Feasibility Study
 - Yes
 - Proposed Plan
 - What do the stakeholders think?
 - No
 - Remedial Design

6. Proposed Plan
 - Yes
 - TCRA (AM)
 - No
 - NTCRA (AM & EE/CA)

7. Record of Decision/DD
 - This is what we’re going to do...

8. Remedial Design
 - Let’s fine tune this a bit...

9. Remedial Action
 - It’s cleanup time!

10. Long-Term Management
 - Keep an eye on things...

11. Project/Property Closeout
 - Is there an imminent threat?
 - Does something need urgent action?
 - If so, deal with it!

12. Timeframe < 6 months?
 - Yes
 - NTCRA (AM & EE/CA)
 - No
 - Remedial Investigation

13. Remedial Investigation
 - Does something need urgent action?
 - If so, deal with it!

14. Remedial Design
 - Let’s fine tune this a bit...

15. Record of Decision/DD
 - This is what we’re going to do...

16. Remedial Action
 - It’s cleanup time!

17. Project/Property Closeout
 - Is there an imminent threat?
 - Does something need urgent action?
 - If so, deal with it!

18. Timeframe < 6 months?
 - Yes
 - NTCRA (AM & EE/CA)
 - No
 - Remedial Investigation
Proposed Plan comes after the FS
- Summarizes the salient elements of RI/FS and includes Army preferred alternative
- Should be succinct and clearly written
 - For a non-technical audience
 - Avoid jargon and minimize acronyms
 - Use tables and figures

Opportunity for public to comment
- Make available for public review at information repository and in admin. record
- Publish Notice of Availability
- Reasonable public comment period, \textit{not less than} 30 days
 - Extension of comment period upon timely request
- Offer opportunity for public meeting
 - Prepare transcript
CONTENTS OF THE PROPOSED PLAN

Introduction
- Identifies the site and describes the public participation process

Site Background
- Facts about the site providing context for subsequent sections of the Plan

Site Characteristics
- Nature and extent of contamination

Scope and Role of Response
- How the MRS or response action fits into the overall site strategy

Summary of Site Risks
- Results of the baseline risk assessment and related land use assumptions

Remedial Action Objectives
- What the proposed cleanup is expected to accomplish
Summary of Alternatives
- The options for attaining the RAOs

Evaluation of Alternatives
- Rationale for Preferred Alternative

Preferred Alternative
- Description of Preferred Alternative
- Explanation of ARARs and Proposed Waivers
- Statement on whether support agencies agree with lead agency’s PP (or explain concerns)

Community Participation
- How the public can provide input to the remedy selection process
Lead agency responds to significant comments
– Project team prepares a written summary
Responsiveness summary will be prepared to accompany ROD
– See next segment
RECORD OF DECISION

This is what we’re going to do…

Selected Remedy
MUNITIONS RESPONSE PROCESS

REMEDIAL RESPONSE

1. **Preliminary Assessment**
 - Might there be a problem?
2. **Site Inspection**
 - Do we really have a problem?
3. **MEC/MC confirmed potential?**
 - NO
4. **Remedial Investigation**
 - How big is the problem?
5. **Feasibility Study**
 - What are the cleanup options?
6. **Proposed Plan**
 - What do the stakeholders think?
7. **Record of Decision/DD**
 - This is what we’re going to do…
8. **Remedial Design**
 - Let’s fine tune this a bit…
9. **Remedial Action**
 - It’s cleanup time!
10. **Long-Term Management**
 - Keep an eye on things…

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

MUNITIONS RESPONSE PROCESS

TCRA (AM)

NTCRA (AM & EE/CA)

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

REMEDIAL RESPONSE

Project/Property Closeout

REMOVAL RESPONSE

If so, deal with it!

PER DERP Management Manual
(DoDM 4715.20)

- Identify legal authority for response
- Describe hazards & unacceptable risks
- Describe response alternatives
- Show how preferred alternative was selected
- State specific environmental restoration objectives (i.e., cleanup goals)
 • More specific than RAOs
 • Removal depths, etc. for MEC
 • Site-specific and residual concs. for chemicals of concern
 • *Should including sufficient detail to judge response complete (RC)*

- List entities responsible for implementation and maintenance
- Document ARARs at time of signature
- Describe regulator and community involvement
 • Responsiveness summary
- Provide declaration, approval, and signature by DoD Component official with delegated authority
AFTER THE RECORD OF DECISION IS SIGNED

Publish a notice of availability
Send copy of signed ROD to regulators
Make document available for public inspection and copying
– Must be near the facility
MODIFICATIONS TO THE REMEDY

What if the selected remedy is not the one described in the Proposed Plan?

– Minor changes
 • Modifications to the selected remedy
 – e.g., type or cost of materials, equipment, facilities, services, and supplies
 • No significant impact on scope, performance or cost

– Significant changes
 • Change to a remedy component
 • Does not fundamentally alter the overall cleanup approach

– Fundamental changes
 • Appreciable change or changes in the scope, performance, and/or cost
 • Change resulting in reconsideration of overall waste management approach selected in the original ROD
 • May be several significant changes that together have the effect of a fundamental change
What needs to be if changes occur?

- Minor changes
 - Document in project file
- Significant changes
 - Must be formally documented in an Explanation of Significant Differences (ESD)
- Fundamental changes
 - Must be formally documented in a ROD Amendment
- How to figure out what is “minor”, “significant”, and “fundamental”?
 - Talk to your Office of Counsel
PUBLIC INVOLVEMENT MINIMUM REQUIREMENTS

U.S. ARMY

Administrative Record
– Collection of documents that contribute to remedy selection
– Available to public in two locations
– Established at beginning of process

Restoration Advisory Board (RAB)
– Representatives of affected community
– Advises commander on environmental restoration issues
– Poll for interest every 2 years

MRS Prioritization Protocol (MRSPP)
– Notify public and solicit info which may affect score

Systematic Planning Process
– Collaborative planning tool reference in Army RI/FS guidance

Proposed Plan
– Solicit input on proposed remedy, address comments
REMEDIAL DESIGN

Let’s fine tune this a bit...
MUNITIONS RESPONSE PROCESS

REMEDIAL RESPONSE

1. Preliminary Assessment
 - Might there be a problem?

2. Site Inspection
 - Do we really have a problem?

3. MEC/MC confirmed potential?
 - YES
 - Is there an imminent threat??
 - NO

4. Remedial Investigation
 - How big is the problem?

5. Feasibility Study
 - What are the cleanup options?

6. Proposed Plan
 - What do the stakeholders think?

7. Record of Decision/DD
 - This is what we’re going to do...

8. Remedial Design
 - Let’s fine tune this a bit...

9. Remedial Action
 - It’s cleanup time!

10. Long-Term Management
 - Keep an eye on things...

11. Project/Property Closeout
 - If so, deal with it!

REMEDIATION RESPONSE

YES

TCRA (AM)

NO

NTCRA (AM & EE/CA)

Timeframe < 6 months?

3a
REMEDIAL DESIGN

Definition
– Technical analysis and procedures that follow remedy selection or a site
– Result in a detailed set of plans and specifications for remedial action implementation

Identify exactly what needs to be done according to ROD
– Design for leaving metal in the ground
– Design for excavation
– Design for LUCs
– Consider exit criteria
– Helps bound contractors’ risk

Perform initial fieldwork
– Additional geophysical investigation
 • Refine anomaly densities
 • Possibly 100% dynamic survey
– Further site evaluation to support design and planning
 • Terrain/topography, etc.
 • Access issues

Produce initial QAPP worksheets
– Complete WS #10, #11
– Critical components of WS#12, #17, & #22
It’s cleanup time!

REMEDIAL ACTION

MEC Removal
Implement LUCs
REMEDIAL RESPONSE

1. Preliminary Assessment
 - Might there be a problem?

2. Site Inspection
 - Do we really have a problem?

3. MEC/MC confirmed potential?
 - Does something need urgent action?

4. Remedial Investigation
 - How big is the problem?

5. Feasibility Study
 - What are the cleanup options?

6. Proposed Plan
 - What do the stakeholders think?

7. Record of Decision/DD
 - This is what we're going to do...

8. Remedial Design
 - Let's fine tune this a bit...

9. Remedial Action
 - It's cleanup time!

10. Project/Property Closeout
 - Keep an eye on things...

TIMEFRAME

- Timeframe < 6 months?
 - YES
 - TCRA (AM)
 - NO
 - NTCRA (AM & EE/CA)

If so, deal with it!
Remedial response is “constructed” in the RA-C phase
- Can include *both* MEC removal and implementation of LUCs

Remedy-in-Place (RIP)
- Considered achieved at the end of the RA-C phase

Response Complete (RC)
- Attained at the end of this phase if there is not an RA-O phase
Overview
– MRS characteristics, contaminants, major findings, and investigation results
– If final RACR, also summarizes prior RACRs

Remediation Goals
– Remediation goals and cleanup goals from ROD

Remedial Actions
– Actions taken to implement the selected remedy and meet cleanup goals

Demonstration of Completion
– Information to demonstrate attainment of remediation goals

Ongoing Activities
– Activities still being performed or to be performed (e.g., O&M, 5-year reviews, etc.)

Community Relations
– Public outreach activities conducted at the site

This is everything you will have to tell the story of how you achieved the ROD requirements and the cleanup goal
LONG-TERM MANAGEMENT

Keep an eye on things…
MUNITIONS RESPONSE PROCESS

REMEDIAL RESPONSE

1. Preliminary Assessment
 - Might there be a problem?

2. Site Inspection
 - Do we really have a problem?

3. MEC/MC confirmed potential?
 - Does something need urgent action?
 - Is there an imminent threat?

4. Remedial Investigation
 - How big is the problem?

5. Feasibility Study
 - What are the cleanup options?

6. Proposed Plan
 - What do the stakeholders think?

7. Record of Decision/DD
 - This is what we’re going to do…

8. Remedial Design
 - Let’s fine tune this a bit…

9. Remedial Action
 - It’s cleanup time!

10. Long-Term Management
 - Keep an eye on things…

3a. Timeframe < 6 months?
 - If so, deal with it!

 - NO
 - Proposed Plan
 - NTCRA (AM & EE/CA)

 - YES
 - TCRA (AM)

REMOTION RESPONSE
Long-Term Management (LTM) is necessary…

- … if a remedial action “results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure (UU/UE)”

LTM involves

- Maintenance of land use controls (LUCs), if needed
 - e.g., inspecting/repairing fences or signs, mailing education materials, etc.
- Five-Year Reviews (FYRs)
 - Reviewing the site and the remedy to evaluate whether
 - The remedy is functioning as intended by the Record of Decision
 - The Conceptual Site Model (CSM) and Remedial Action Objectives (RAOs) used at the time of remedy selection are still valid
 - There is any new information to suggest the remedy is no longer protective
 - Occur at a frequency of at least every five years
 - May be performed on a site-wide basis
AND NOW YOU KNOW HOW TO MMRP!
QUESTIONS?