Whole Body Vibration Exposure of MH-60S Pilots

LT Kristin Harrer, MSE, LCDR Dave Ellenbecker, MS, Carol Lavery, MPH, CIH, Nancy Estrada, MPH, Alec Wong, MS, Jane Nowell, MS, CIH

Naval Medical Center, San Diego

LCDR Maria Majar, MS

COMNAVAIRPAC

LCDR Debra Yniguez, MS

COMHSCWINGPAC

Why Study Whole-Body Vibration?

OPNAVINST 5100.23F

Prevent long-term back injuries

Save \$\$\$

What is Whole Body Vibration (WBV)?

 Energy transmitted to the body as a whole, through a supporting surface

Important Factors:

- magnitude
- direction
- frequency

Health Effects for Whole Body Vibration

Bone and cartilage degeneration

Digestive and reproductive system disorders

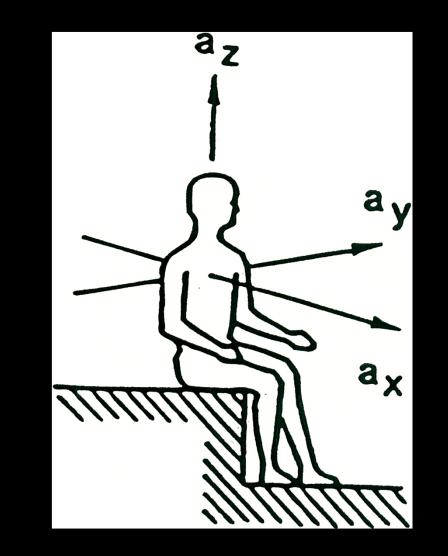
Nervous System Disturbances

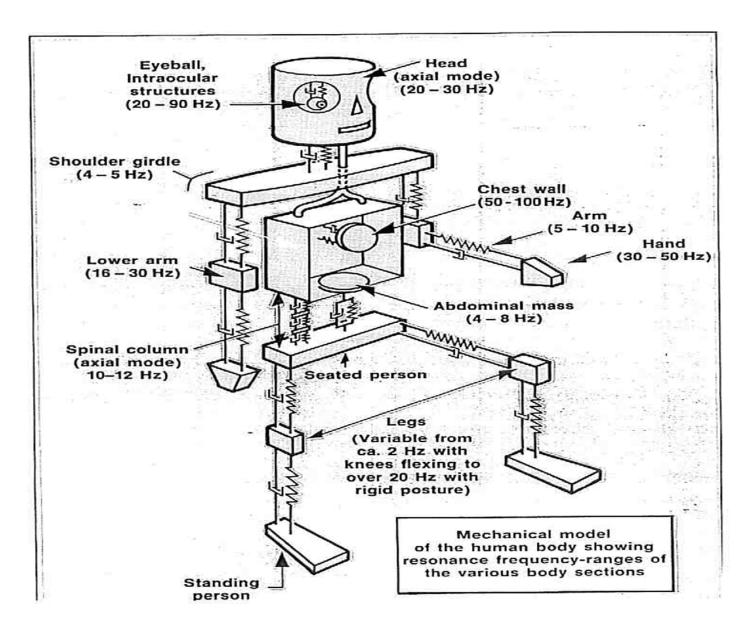
MH-60S

2 Navy Pilots
Up to 13 crewmembers
SAR, VERTREP, Spec Warfare Support, & Mine Countermeasures

 Seat issue – unauthorized cushion

Measuring Vibration


Acceleration: measure of vibration


Vibration: magnitude and direction

Measurements: three directions: x, y, z

Units: meters per second squared (m/s²)

Biodynamic Coordinate System

How Do We Control Exposure to Whole Body Vibration ?

Redesign or engineering controls

Maintain seating systems

Administrative controls

Anti-vibration seat cushions

Previous Study

Pilot and crew seats evaluated in 2004

Results showed crew seat won!

X-axis at 16Hz was the worst for WBV

 4-8 hour TLV curves were reached for the Zaxis

Current Study

Compare current MH-60S pilot/co-pilot seat cushion to an "anti-vibration" seat cushion

Current Seat Cushion

"Anti-vibration" Seat Cushion

Current MH-60S Pilot Seats

- 1" Foam Cushion
- Minimal lumbar support
- Adjustable Fore/aft & vertically
 - Crashworthiness
 - Sustain a 19G crash
 - Spinal Force

Needs for New Seat Design

Comfort (Limited Focus)

 "Excessive use of soft cushion is a common fault in helicopter seats. This type of seat may appear to be comfortable to the casual occupant, but after an hour or so the material begins to 'bottom' under the load and the pelvis gradually sinks towards the floor of the seat pan."

An Approach to the Problem of Backache in Aircrew Dr. J.G. Fitzgerald, RAF Institute of Aviation Medicine

Seat Cushion Specifications

 Crash worthiness:

 19G/1500 pound lumbar load survivability specification of 14 CFR (FAR) 23.562

Fire Resistance

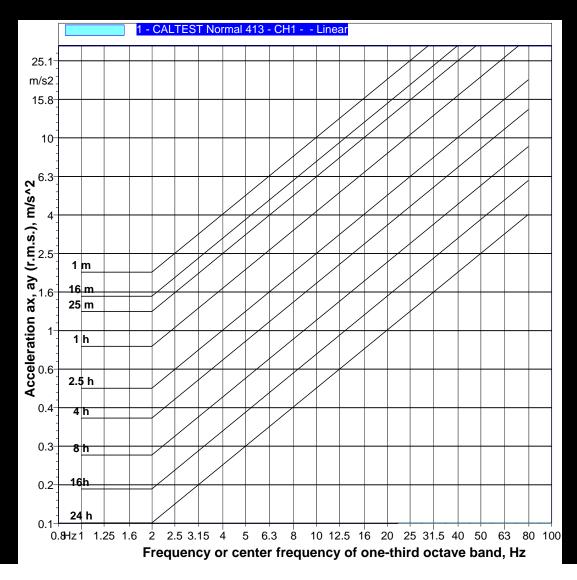
Flotation capability

Solutions to Design Problem

- Material construction: Visco-elastic rate damping foams
 - Acts like shock absorber not a spring
 - Slowly returns to original shape after impact
 - Crashworthiness:
 - 50 to 200 milliseconds of a crash or ejection
 - Poly foams return instantly, creating the "jackhammer" effect
 - Converts kinetic energy to thermal energy as indicated by 2°F temperature increase resulting from a 50 millisecond pulse

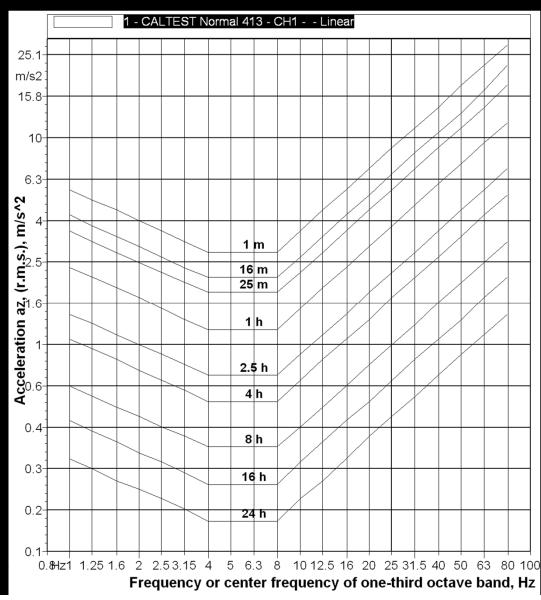
Whole Body Vibration Standards ISO 2631-1

Guidelines for evaluation of whole body vibration


ANSI S3.18-1979
 Whole body vibration standard

MIL-STD 1472-F
 DOD Guidelines for design criteria

ACGIH-TLV


Guidelines for evaluation and control

Whole Body Vibration ACGIH-TLV for X & Y-axis

Whole Body Vibration ACGIH-TLV for

Z-axis

Recommended Action Level

0.5 m/s² for an 8 hour day

Recommended by the Commission of the European Communities

Methods

 Acceleration for each axis averaged over 5 min intervals

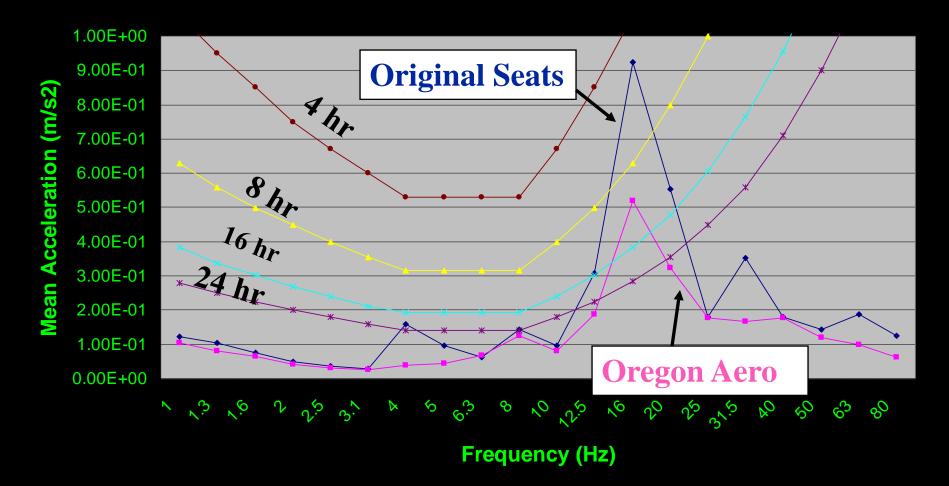
 Compared original seat cushion to antivibration seat cushion

 Statistical Analysis (t-test) performed for each axis at the dominant frequency

Instrumentation

2 SVAN 948's

2 tri-axial accelerometer seat pads



Weighted Results

	X-axis	Y-axis	Z-axis
Original Seat Cushions	0.21 m/s ²	0.20 m/s ²	1.38 m/s ²
Oregon Aero Seat Cushions	0.20 m/s ²	0.19 m/s ²	0.88 m/s ²

**** 0.5 m/s² is the recommended Action Level by the Commission of European Communities

Z-axis Frequency Spectrum

Statistical Summary of the Two Sample t-test in the Z-axis at 16Hz

Seat Cushion	Mean Acceleration (m/s ²)	Standard Deviation (m/s ²)
Original	1.247	0.303
Oregon Aero	0.707	0.163

t-value = 2.65 \longrightarrow p \leq .005 \longrightarrow Highly significant

Discussion

Fixing accelerometer to seat cushion is an issue.

Anti-vibration seat cushion is an improvement

Future Studies

- Continued seat cushion comparison
- Longer flights
 - Transmissibility study
 - Crew seat study
 - Other Navy operations

Acknowledgements

LCDR Dave Ellenbecker, IHO LCDR Maria Majar, IHO LCDR Debra Yniguez, AMSO Mr. Jim Gould, Class Desk Officer Mr. Michael Tucker, Oregon Aero **HC-11** Marilyn Cooper, SAGE Technologies NMCSD Ergonomics Team

QUESTIONS????

POC: LT Kristin Harrer klharrer@nmcsd.med.navy.mil 619-524-0868

