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Abstract

Amongst many ongoing initiatives to preserve biodiversity, the Millennium Ecosystem Assessment again shows the importance
to slow down the loss of biological diversity. However, there is still a gap in the overview of global patterns of species distributions.
This paper reviews how remote sensing has been used to assess terrestrial faunal diversity, with emphasis on proxies and
methodologies, while exploring prospective challenges for the conservation and sustainable use of biodiversity. We grouped and
discussed papers dealing with the faunal taxa mammals, birds, reptiles, amphibians, and invertebrates into five classes of surrogates
of animal diversity: (1) habitat suitability, (2) photosynthetic productivity, (3) multi-temporal patterns, (4) structural properties of
habitat, and (5) forage quality. It is concluded that the most promising approach for the assessment, monitoring, prediction, and
conservation of faunal diversity appears to be the synergy of remote sensing products and auxiliary data with ecological biodiversity
models, and a subsequent validation of the results using traditional observation techniques.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The importance of biodiversity conservation is
widely recognised, as there is a general concern about
its current status and about the responses by society to
present and future environmental changes (Gaston,
2000; Mace, 2005; Millennium Ecosystem Assessment,
2005). Biodiversity definitions include different levels
of organisation of biological variation and richness,
from genes and species to ecosystems. Noss (1990)
expressed the variation at each of these hierarchical
levels in terms of three spheres: composition (e.g. the
genes of different cattle races), structure (e.g. the ratio
of large versus small bodied animals), and function (e.g.
forage consumption). However, this multi-faceted
nature of the term biodiversity makes it a difficult
concept to capture in one definition or description, so it
cannot be measured in a single parameter (Noss, 1990;
Wolfgang, 2003; Scholes and Biggs, 2005). The
challenge to measure these levels and spheres of
organisation of biological variation has led to the search
of relevant biological indicators from which biodiver-
sity could be measured. These indicators include
species, habitats, and eco-regional characteristics,
which can be sampled in the field, categorized, and
interpreted.

Despite the efforts of scientists and policy makers to
reduce the rate of species loss, there is still a gap in the
overview of continental and global patterns of species
distributions (Brooks et al., 2001; Ceballos et al.,
2005). Remotely sensed data contribute to the
assessment and monitoring of biodiversity from local
to global scales (Murthy et al., 2003), and over time,

with spatially continuous coverage. Since the 1980s,
satellite multispectral imagery became a common tool,
particularly in exploring the composition of biodiver-
sity, i.e. species richness (e.g. Saxon, 1983; Nagendra,
2001). Several articles reviewed the potential and
contribution of remote sensing data products to assess
terrestrial vascular plant species diversity (e.g. Stohlg-
ren et al., 1997; Gould, 2000; Griffiths et al., 2000;
Nagendra, 2001). This review article has the purpose to
summarise the historical development and prospective
approaches in which remote sensing was used to assess
and monitor terrestrial faunal diversity. While an
important methodology of plant diversity consists in
direct mapping of species and associations (Nagendra,
2001), the fugitive and secretive nature of animals
requires approaches based on proxies and surrogates.
Based on the currently applied methodologies, the
following broad categories were identified, reflecting
chronological approaches in this field: (1) habitat
suitability mapping, relying on species-habitat asso-
ciations, (2) spatial heterogeneity assessment based on
primary productivity, (3) temporal heterogeneity
assessment, (4) mapping of structural properties of
habitat, and (5) mapping of plant chemical attractants,
relying of the influence of land cover attractants on
fauna, such as forage quality. These latter categories
enclose the range from the most frequently used
methodologies applied to terrestrial animal taxa to the
latest approaches found in literature. In addition, direct
and indirect measurements of species diversity and
distribution are illustrated. Within each approach, the
literature was, furthermore, grouped following the
taxonomical system: mammals, avifauna, reptiles,
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amphibians, and invertebrates. These taxonomic
groups represent the most frequently studied taxa,
and reflect different challenges to the application of
remote sensing to assessing animal species presence.
The discussion evaluates theory development and the
potential use of remote sensing techniques for
terrestrial animal ecology studies related to species
diversity, and the prospective direction of remote
sensing approaches applied to this field.

2. Assessing species richness through habitat
suitability mapping

The most straightforward approach to estimate
animal distribution or species richness from remotely
sensed data is to identify and detect animal habitat
suitability. A habitat is the local environment in which
an organism normally lives and grows. In order to map
habitat, knowledge of habitat preferences and the
requirements of the species of interest is combined with
airborne or satellite data, biophysical, geophysical data,
and meteorological data.

For ecological biodiversity assessments, field sur-
veys are usually executed to collect data on species
distribution, habitat use or characteristics of nesting,
breeding, or burrowing sites. Additionally, habitat use
patterns can be derived from analysis of movements of
radio or satellite collared individuals (e.g. Kanai et al.,
1994; Bechtel et al., 2004). Using remote sensing, these
local measurements can be extrapolated to cover a large
region of interest, and estimate habitat suitability. After
collecting field survey data, spectral in situ measure-
ments at the locations of the ecological assessments or
the spectral properties of the pixel corresponding to this
location are used as training data to classify the imagery
for a larger area. Resulting maps with spatially discrete
habitat types can then be analysed using a wide array of
statistical techniques to validate classified habitat with
species population data. The main problem with this
approach is the assumption that empirical conditions at
the field survey point may be extrapolated over a large
area. Such an assumption needs to be carefully tested
otherwise the resulting maps will be biased by the
sample points. In other words, habitats may not be
described and stratified in ecologically meaningful
terms, which could limit the predictive value of the
relationships between reflectance data and species
distribution within and beyond the study area.

The following sections demonstrate how widely
remote sensing approaches are applied to estimating
habitat suitability in terrestrial environments throughout
many animal taxa.

2.1. Mammals

One of the earliest publication involving satellite
imagery to detect mammalian species dates from 1980,
when Loffler and Margules (1980) estimated the
distribution of hairy nose wombat (Lasiorhinus lati-
frons) in southern Australia by identifying burrows and
mounts from Landsat imagery. Also in Australia, Saxon
(1983) used Landsat imagery to locate a habitat suitable
for the re-introduction of rufous hare-wallabies
Lagorchestes hirsutus. Later in the 1980s this approach
of relating remotely sensed land cover types to habitat
suitability, was used amongst others for assessment of
the habitat of the giant panda, Ailuropoda melanoleuca
(De Wulf et al., 1988), elk, Cervus elaphus (Eby and
Bright, 1985) and white-tailed deer, Odocoileus
virginianus borealis (Ormsby and Lunetta, 1987).
The method of habitat mapping by means of signature
classification was applied throughout the 1990s (e.g.
Huber and Casler, 1990; Del Valle et al., 1997; Fuller
et al., 1998; Cardillo et al., 1999; Richards, 1999) and is
still used today (e.g. Oindo et al., 2003; Sharma et al,,
2004). ,

Other authors tried to derive general patterns of
species richness in relation to habitat (White et al.,
1997; Mason et al., 2003). Fuller et al. (1998) combined
field surveys of plants and animals with satellite remote
sensing of broad vegetation types to map biodiversity in
the Sango Bay area in Uganda. They identified 14 land-
cover classes from reflectance characteristics and
validated the results with field surveys, recording
86% correspondence between field and map data. The
field surveys included flowering plant species, dragon-
flies, butterflies, fish, amphibians, reptiles, birds, and
mammals. These species data were used to generate
biodiversity ratings, based on species ‘richness’ and
‘rarity’, which could be related to the vegetation cover.
Similarly, Cardillo et al. (1999) predicted species
richness and occurrences of terrestrial mammals from
Principal Component Analysis (PCA) ordinated land
cover variables from the Land Cover Map of Great
Britain. Because of the high proportion of species with
geographic distributions changing independently of
land cover, the predictive strength of the land cover data
for species richness assessment was however limited.

Heitkonig et al. (2003) directly correlated the
distribution of large mammalian herbivores in the
Okavango delta in Botswana with Landsat Thematic
Mapper (TM) and Enhanced Thematic Mapper (ETM+)
reflectance data. Animal distribution was sampled along
field transects, while registering the locations with a
Global Positioning System (GPS), and the recorded
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animal presence was related to the spectral signature of
the location. A multivariate approach allowed for the
distinction of occurrence of several mammalian species,
including elephant (Loxodonta africana), zebra (Equus
burchelli), and impala (Aepyceros melampus). However,
species with low densities in the field, including giraffe
(Giraffa camelopardis) and wildebeest (Connochaetes
taurinus), were not successfully distinguished. Bechtel
et al. (2004) used a comparable method for woodland
caribou (Rangifer tarandus caribou). Because habitat
maps were incomplete for their study area, they
correlated spectral information obtained from Landsat
5 TM satellite data with Global Positioning System
(GPS) locations of satellite collared, and Very High
Frequency Radio locations of collared animals. First, a
statistical approach was used to automate the classifica-
tion of each satellite imagery pixel to generate landscape
classes based on characteristic spectral signatures. These
classes were then regrouped corresponding to their
relation with the GPS-registered animal presence. The
resulting map indicated the woodland caribou use and
avoidance of areas, based on corresponding identified
spectral classes of the satellite imagery.

Coops and Catling (1997) used airborne multi-
spectral videographic data to accurately predict the
complexity of fauna habitat across forested landscapes.
This video system provides a tool for stratifying the
forest into fauna habitats to predict the composition,
spatial distribution and abundance of faunal groups that
are known to prefer the eucalypt forests (Coops et al.,
1998; Catling et al., 2000). Coops and Catling (2002)
then related habitat quality based on complexity scores,
to predict future relative abundance of the long-nosed
potoro (Potorous tridactylus) and the large wallabies
(red-necked wallaby, Macropus rofogriseus, and swamp
wallaby, Wallabia bicolour) across landscapes.

Mammals are relatively well studied and their habttat
preference is quite well documented, which is of vital
importance for successfully correlating mammal occur-
rence to remotely sensed habitat data. Many species
however (e.g. generalist species) use more than a single
distinct vegetation type, and non-herbivore species tend
to have little direct association with a habitat or
vegetation type that can be remotely sensed (e.g.
Cardillo et al., 1999; Cowley et al., 2000). In other
cases, there is a limitation to the use of remotely sensed
data due to the animals’ elusive nature. The predictive
value of mammal-habitat relationships will also be
limited for species for which the habitat preference
changes with geographical position (e.g. Cardillo et al.,
1999). Another issue that complicates the link between
species presence and habitat characteristics is the socio-

biology of the species. The predicted distribution of
guanaco (Lama guanicoe), for example, proved to have
little correlation with the real distribution and densities
(Del Valle et al., 1997). The socio-biology of the
species, classified as ‘resource defence polygyny’
(Franklin, 1983) where a dominant male will defend
his territory against other males, in combination with
interspecific competition with sheep and anthropogenic
influences, was identified as the possible reason for the
inaccuracy of the predictions.

2.2. Avifauna

Since the 1980s, remote sensing has been widely used
in assessing and monitoring bird distribution and habitats
(e.g. Bainesetal., 1986; Perras et al., 1988; Mintonetal.,
2003; Venier et al., 2004). Habitat maps are aggregated
from land cover maps that are generally produced from
Landsat or radar imagery. The habitat maps are then
combined with data from bird composition and abun-
dance surveys, yielding distribution and density maps
(e.g. Palmeirim, 1988; Schwaller et al., 1989; Avery and
Haines-Young, 1990; Kanai et al., 1994; Morisson, 1997;
Debinski et al., 1999; Osborne et al., 2001; Taft et al.,
2003; Fuller et al., 2005; Prins et al., 2005).

Apart from Miller and Conroy (1990), who classified
data from the Satellite Probatoire d’Observation de la
Terre (SPOT) to predict Kirtland’s warbler (Dendroica
kirtlandii) occurrence in the Bahamas based on vegeta-
tion types, most studies applied Landsat TM data for the
prediction of single bird species habitat suitability.
Knowledge and ground studies on habitat preferences
for nesting and feeding were combined with Landsat data
for sedentary (e.g. Osborne et al., 2001; Johnson et al.,
1998; Hurlbert and Haskell, 2003) as well as migratory
birds (e.g. Green et al., 1987; Avery and Haines-Young,
1990; Sader et al., 1991). Environmental criteria (i.e.
vegetation cover, landscape characteristics) derived from
Landsat data were used to assess the location of nesting
sites of buzzards, Buteo buteo (Austin et al., 1996) and
great sandhill cranes, Grus canadensis, in Minnesota
(Herr and Queen, 1993). Further, the probability of
occurrence of 14 out of 23 species of land birds in Maine
(Hepinstall and Sader, 1997), as well as winter
distributions of sage grouse (Centrocercus urophasianus)
in Utah (Homer et al., 1993) were successfully predicted
using Landsat imagery. Kanai et al. (1994) analysed data
of satellite collared red crowned cranes (Grus japonen-
sis), hooded cranes (Grus monacha) and white-naped
cranes (Grus vipio) to determine habitat use and species
distribution. Subsequently, a combination of Landsat
with Marine Observation Satellite-1 Multi-spectral
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Electronic Self-scanning Radiometer (MOS1 MESSR)
data was used to derive the characteristics of seven sites
that were identified as crane habitat. The method proved
very helpful, because the large crane habitats cannot
easily be monitored through ground studies.

Some recent studies focus on avifaunal diversity,
leading from single species assessments to diversity
predictions for whole taxa. Nghr and Jgrgensen (1997)
related avian diversity in northern Senegal to landscape
diversity, while Debinski et al. (1999) categorized
habitats in the Greater Yellowstone ecosystem based on
Landsat data and then determined the relationship
between habitat categorizations and plant, bird, and
butterfly species distribution patterns. They found that
sites of highest species richness coincided for plants,
birds, and butterflies. This coincidence of ‘hotspots’ of
different taxa shows those indicator taxa could be used
to assess an areas’ biodiversity status. Also in the
Greater Yellowstone ecosystem Saveraid et al. (2001)
assessed potential bird habitats for 11 types of montane
meadows. Landsat imagery was further analyzed to
identify habitats for migratory birds in Costa Rica
(Sader et al., 1991), and to predict bird species richness
in boreal agricultural-forest mosaics in south-western
Finland (Luoto et al., 2004). Fuller et al. (1998) related
the diversity of various taxa, including flowering plant
species, dragonflies, butterflies, fish, amphibians,
reptiles, birds and mammals in Uganda to vegetation
cover derived from Landsat. Areas of bird endemism in
East Africa were related to remotely sensed climatic
variables by Johnson et al. (1998), to obtain general
patterns of bird species richness. It was concluded that
contemporary environmental conditions, ultimately
determined by climate, appear to account for a
substantial fraction of the observed variation in the
distribution of endemic bird areas.

The above bird studies demonstrate that habitat
classifications based on remote sensing data can be
successful for sedentary and migratory birds, as well as
bird communities. However, the spatial and spectral scale
of the data appears to be a crucial factor in the prediction
of bird occurrence patterns. Laurent et al. (2005)
investigated the potential of using unclassified spectral
data for predicting the distribution of three bird species by
varying (1) the window size used to average spectral
values in signature creation, and (2) the threshold
distance for recording bird observations. Accuracy
statistics for each species were affected by the detection
distance of point count surveys used to stratify plots into
presence and absence classes. Thus, the accuracy of
wildlife occurrence maps classified from spectral data
will differ given the species of interest, the spatial

precision of occurrence records used as ground
references and the number of pixels included in spectral
signatures. Akin to mammal studies, alow number of bird
records per habitat type decrease the power of the
statistical tests to distinguish differences between habitat
use and availability in bird studies (Garshelis, 2000).

2.3. Reptiles and amphibians

Only two studies on mapping reptilian or amphibian
habitats using remote sensing data were identified, but
both were innovative and successful. Raxworthy et al.
(2003) assessed and predicted the distribution of known
and unknown chameleon species in Madagascar, using a
combination of satellite data (Moderate Resolution
Imaging Spectroradiometer (MODIS) and historical
and recent chameleon observations on the island). A
generic algorithm for rule-set prediction (GARP) was
used to delineate ecological niches, based on environ-
mental geographical information system (GIS) data,
and to predict geographical distributions of species.
This study leads to the discovery of seven new species
of chameleon.

Scribner et al. (2001) used in situ and remotely sensed
data of the aquatic and terrestrial environment, to
examine the correlation of habitat characteristics with
population demographic and genetic characteristics of
the common toad (Bufo bufo). This study was the only
one (encountered) that focussed on the sub-species level.
Allelic (i.e. genetic) richness, population size, and toad
presence were mostly associated with terrestrial habitat
variables, like pond density, availability of woodlands,
hedgerows, and anthropogenic development.

While remotely sensed data for animal diversity
assessment using habitat characteristics is increasingly
used, its application to reptile and amphibian diversity
remains poorly explored. Despite the success of the
above-presented studies, there is still a gap between
ecological theory and the application of remotely
sensed data. One of the problems is that there is no clear
understanding over which spatial scales the species-
habitat relationships apply for species of interest,
specifically those of limited vagility. The complex life
histories of amphibians and their secretive behaviour
add to the challenge of successfully using remotely
sensed data.

2.4. Invertebrates
Remotely sensed imagery is increasingly used to

detect insect habitats or the effects of insects on their
environment (Riley, 1989; Hay, 1997). Habitat patch
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characteristics essential for many insects, such as
micro-variations in wetlands, grasslands and forests are
too small to be identified using conventional imagery
(Fisher, 1997; Cracknell, 1998). A recent study tackled
the problem of sampling scale inherent to insect habitat
mapping by comparing two satellite sensors with
different spatial resolution (SPOT and Landsat) and,
as a result, optimized insect species richness mapping at
a landscape level (Chust et al., 2004).

One of the most common cases of insect habitat
mapping deals with swarming insects that have the
potential to destroy their habitat. Defoliating insects,
once present in a food-endowed environment, quickly
expand to a devastating outbreak consuming their
primary resource. This allows a precise distribution
mapping through classification of vegetation defoliation
or discoloration using remote sensing. For instance,
Joria et al. (1991) successfully classified gypsy moth
(Choristoneura fumiferana) defoliation into three
damage classes by delineating affected areas with
Landsat data. Franklin and Raske (1994) differentiated
four defoliation levels of spruce budworm (C.
fumiferana) in a balsam fir forest analyzing SPOT
HRYV data. The spectral response of the Jack Pine (Pinus

banksiana) canopy, attacked by the Jack Pine budworm .

(Choristoneura pinus pinus), was first described by Hall
et al. (1995). Landsat TM images before and after
defoliation were acquired to map the top-kill severity.
Another aggressive defoliator actor widely documented
is the mountain pine beetle (Dendroctonus ponderosa)
which is primarily hosted by the lodgepole pine (Pinus
contorta). Combinations of SPOT multispectral and
panchromatic bands and PCA-transformations were
evaluated by Sirois and Ahern (1988) to determine their
ability to detect mountain pine beetle mortality (‘red
attack’). A conceptual model based on spectral bright-
ness—greenness was developed and tested (Price and
Jakubauskas, 1998) to relate beetle infestation to
spectral properties. Similar examples are reported for
pear thrips (Taeniothrips inconsequens) (Vogelmann
and Rock, 1989); the black-headed budworm (Acleris
variana) (Franklin et al., 2002; Luther et al., 1997); the
aspen tortrix (Choristoneura conflictana) (Hall et al.,
2003); and the Douglas-fir beetle (Dendroctonus
pseudotsugae) (Lawrence and Labus, 2003).

In more diverse ecosystems, notable efforts to create
habitat maps from remotely sensed data were made for
butterfly and beetle species. Butterfly species are often
host-specific and their diversity may correlate with
underlying plant diversity. Thus, Debinski et al. (1999)
reported that several rare butterfly species significantly
correlated with remotely sensed habitat types in the

Greater Yellowstone Ecosystem. The modelling of
Luoto et al. (2002) supported the findings that specialist
butterfly species distribution is closely related to
remotely sensed habitat types. British ground (Coleop-
tera, Carabidae) (Eyre et al., 2003a) and water beetle
(Coleoptera spec.) species pool distribution (Eyre et al.,
2003b) strongly correlated with satellite-derived land
cover data. Chust et al. (2004) successfully assessed
woodland invertebrate taxa distribution based on
satellite imagery.

Compared to other taxonomic groups, the ability of
remote sensing data to contribute to the mapping and
prediction of occurrence of invertebrate diversity
appears to be poorly investigated. The current trend
of studies on terrestrial invertebrates shows an emphasis
on insects, whereas for other taxa there is no literature
known to the authors. The majority of articles
concentrated on insects that are considered pests, and
their effects on crops or forests. However, very few
studies deal with conservation efforts. Besides, the
approach is limited to habitat-insect relationships using
only beta diversity (i.e. local diversity, within-commu-
nity component) whereas gamma diversity (i.e. total
regional diversity) is not taken into account.

2.5. Summary

Habitat suitability is widely used as a remotely
sensed proxy for species distribution and richness. It
mainly covers the composition sphere of biodiversity.
Though successful in many of the discussed examples,
the micro-heterogeneity of an area required for many
species does not always allow a discrete classification
approach. Many species (e.g. generalist species) use
more than a single distinct vegetation type and some
non-herbivore species may show low strength of
association with a habitat or vegetation type because
many species, regardless of the degree of habitat-
specificity, do not occupy the full extent of their
preferred habitat type that can be remotely sensed (e.g.
Cardillo et al., 1999; Cowley et al., 2000). Current
habitat classification is based on discrete maps and the
resulting representation of class boundaries may not
capture the meaningful ecological functional variability
for each species.

Correspondence between field data and remotely
sensed imagery aimed at species communities was
found to be high in some studies (Fuller et al., 1998;
Bechtel et al.. 2004), but limited in others (e.g. Cardillo
et al., 1999; Heitkonig et al., 2003). One factor limiting
the accuracy in this approach appears to be the
application of proxies at inappropriate spatial, spectral,
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and temporal resolutions. Remote sensing studies
involving species diversity need to consider different
levels of taxonomic resolution. Several studies used a
higher or lower taxonomic resolution approach as proxy
for estimating species richness for other taxa (Baldi,
2003; Olsgrad et al., 2003; Doerries and Van Dover,
2003; Sauberer et al., 2004; Ward and Lariviere, 2004).
Cross-taxon congruence in biodiversity across different
groups of organisms was also investigated as potential
surrogates for each other (Negia and Gadgil, 2002;
Heino et al., 2005). However, correlations and
congruencies in species richness among different
taxonomic groups are difficult to generalise as they
differ to environmental gradients. Accuracy of asses-
sing species diversity in particular may further increase
by adding environmental variables to the analysis.
Moreover, despite the potential of remotely sensed data
for habitat suitability analysis, ground survey data (e.g.
species composition, abundance, and density maps) are
essential to provide the basis for finding ecologically
meaningful interpretations and for predicting species
distribution and diversity.

3. Assessing species richness through spatial
heterogeneity based on primary productivity

Spatial heterogeneity is one of the driving factors in
the explanation of species richness (Stoms and Estes,
1993). It has long been accepted that environmental
heterogeneity may support richer species assemblages
compared to simple ecosystems (Simpson, 1949;
MacArthur and Wilson, 1967; Lack, 1969; Huston,
1994) because of the creation of niche differentiation
(Tilman et al., 1997; Loreau, 1998). This is of particular
relevance for dealing with the structural sphere of
biodiversity. Here, we are concerned not only with the
species composition, but also with the relationships of
species towards one another. Factors contributing to the
environmental heterogeneity include the temporal and
spatial variation in the biological, physical, and
chemical features of the environment that create
different conditions that species can preferentially
exploit (Morin, 2000). In comparison with the previously
discussed discrete classification approach, the biological,
physical, and chemical features are represented in a
continuous way. Depending on the spatial, spectral,
temporal, and angular resolution of the remotely sensed
data, different levels of differentiation are reached, while
post-processing techniques (e.g. density slicing, thresh-
olds) allow the assignment of a discrete class to every
pixel, if necessary. Plant productivity and biomass of
ecosystems vary in space and time, and the spatial

heterogeneity in productivity is hypothesized to influence
species distribution and local abundance of individuals
{Brown, 1988; Currie, 1991; Brown and Lomolino, 1998;
Gaston and Blackburn, 2000; Oindo and Skidmore, 2002;
Seto et al., 2004).

The most commonly used parameter for quantifying
productivity and above-ground biomass of ecosystems
is the Normalized Difference Vegetation Index (NDVI)
(Tucker, 1979). It is based on the strong absorption of
the incident radiation by chlorophyll in the red, and the
contrasting high reflectance by plant cells in the Near
infrared (NIR) spectral region. Because it is based on
the normalized ratio of the reflectance in these two
spectral bands (i.e. NDVI = (NIR — red)/(NIR + red)),
it is an indicator of the greenness of vegetation canopies
and able to separate vegetation from other materials.
NDVI values proved to be a suitable indicator for
vegetation parameters including biomass and above-
ground primary productivity (e.g. Sellers, 1985, 1987;
Tucker and Sellers, 1986; Box et al., 1989), and it is
therefore often correlated to faunal species occurrence
and diversity.

3.1. Mammals

Since the late 1990s, an increasing number of studies
is analysing NDVT to predict wildlife habitat suitability.
Verlinden and Masogo (1997) found a significant
positive relationship between NDVI and grass green-
ness in the Kalahari of Botswana. The relationship
between NDVI and animal distribution using animal
census data turned out to be more complex. Results
using presence/absence data indicated a significant
selection for higher NDVI signatures only for ostrich
(Struthio camelus) and wildebeest (C. taurinus), the
latter only when present in high numbers. The gemsbok
(Oryx gazelle), the less abundant eland (Taurotragus
oryx), and the locally concentrated springbok (Anti-
dorcas masupialis) did not show significant relation-
ships with greenness and NDVI. Musiega and Kazadi
(2004) found, that the great seasonal migration of herds
of wildebeest (C. taurinus) in the Serengeti-Mara
ecosystem is primarily driven by green vegetation
availability, as detected using NDVI. In another African
case, Zinner et al. (2001) described habitat quality in
central Eritrea through NDVI derived from Landsat
MSS satellite data for three baboon species (Papio
hamadryas hamadryas, Papio hamadryas anubis and
Chlorocebus aethiops). Hamadryas (P. h. hamadryas)
and olive baboons (P. k. anubis) tended to select better
quality habitats, characterized by a higher NDVI than
the average in four out of five ecogeographical zones in
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Eritrea. Moreover, Hamadryas baboons showed a
greater ecological plasticity than olive baboons, which
are confined to riverbeds with extended gallery forest.

Although successful in some studies (e.g. Zinner
et al., 2001), difficulties in correlating NDVI with the
mammal distribution of less abundant species (Verlin-
den and Masogo, 1997) remain unsolved. Results
suggest that relationships between less abundant species
and greenness might become insignificant because of a
large number of unoccupied suitable habitats. More-
over, the biomass-based approach is successful only
with herbivorous species that are sensitive to differences
in vegetation characteristics across an area.

3.2. Avifauna

Jgrgensen and Neghr (1996) and Nghr and Jorgensen
(1997) used a combination of satellite image analysis
and ornithological surveys to assess avian biodiversity
in the Sahel. A Landsat image was used to derive
landscape diversity and NDVI, the latter being an
indicator for the annual biomass production. Both
variables were significant factors in a multiple
regression model explaining species diversity. Hurlbert
and Haskell (2003) analysed avian ‘species richness in
relation to primary productivity and habitat hetero-
geneity in America. They found that NDVI was a good
predictor of seasonal species richness at fine spatial
scales, whereas habitat heterogeneity best predicted
richness at coarser spatial resolutions. Hawkins (2004)
and Hawkins et al. (2003) showed that productivity
indicators (NDVI and actual evapotranspiration) corre-
lated well with bird diversity data in North America. A
positive correlation between NDVI and bird and
butterfly species richness was found by Seto et al.
(2004), though this relation did not have a definite
functional shape. The relationship between NDVI and
species richness of butterflies was strongest at high
spatial resolutions, whilst that of birds was better at a
lower resolution. In a comparable study, Bailey et al.
(2004) distinguished between both habitat primary
productivity and habitat heterogeneity by using
estimated maximum NDVI and the spatial variation
therein. This, in turn, was correlated with species
richness of birds and butterflies. They found positive
linear relationships between maximum NDVI and the
number of functional guilds of birds and species
richness of neotropical migrant birds, but a negative
association between NDVI and the number of func-
tional guilds of birds and species richness of resident
birds. Alternatively, Lee et al. (2004) found a hump-
shaped relationship between NDVI and bird species

richness in Taiwan, but this became insignificant when
effects of roads and elevation were accounted for.

Generally, NDVI proves to be a suitable proxy
reflecting primary production or heterogeneity. Never-
theless, the correlations with bird species diversity were
positive, hump-shaped, or even negative. The differ-
ences in results suggest that a functional link between
NDVI and diversity remains elusive, underpinning the
importance of ground truth data and validation. Results
from several studies (e.g. Bailey et al., 2004; Cushman
and McGarigal, 2004) suggest that taxa related scale
issues are to be considered when setting up a monitoring
scheme using remote sensing

3.3. Reptiles and Amphibians

In a study on two genetically differentiated forms of
the Golden-striped salamander (Chioglossa lusitanica)
in Portugal, Arntzen and Alexandrino (2004) applied
GIS-based rules in addition to NDVI data, and found
that the southern form of the salamander tended to
encounter harsher environmental conditions, with lower
precipitation, air humidity, summer temperatures and
NDVI, but with a higher number of frost months than
the northern form. This is the only study on amphibians
using NDVI to assess or monitor species richness.

3.4. Invertebrates

Very few studies use remote sensing data to assess or
predict invertebrate species richness beside cases cited
above as pests or acting as disease vectors. Never-
theless, Seto et al. (2004) and Bailey et al. (2004) found
strong correlations between NDVI values and butterfly
species’ richness in the Great Basin of western North
America.

Insect outbreaks may result in such a dramatic
reduction in standing biomass, that it enables vegetation
indices to precisely indicate the affected location.
Amongst the earliest reports on remote insect detection,
Nelson (1983) analysed Landsat data for detecting
significant forest canopy alteration caused by gipsy
moth (Lymantria dispar) defoliation. The author found
that the transformed vegetative index difference (VID =
NIR — red) most accurately delineated forest change,
and thus was able to map gypsy moth outbreak. More
recently, MODIS NDVI data was successfully analysed
to map a locust (Locust migratoria manilensis) plague
in China (Ma et al., 2005). The NDVI difference image
between the data before and after the peak damage of
the locust plague accurately mapped the geographical
extent and severity of the affected areas.
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Many invertebrate studies used NDVI in combina-
tion with the reflectance in the middle infrared, land
surface temperature, and rainfall to predict abundance,
distribution and seasonality of diseases transmitted by
an invertebrate vector. Robinson et al. (1997) used
satellite data to make predictions of the probable
distribution of tsetse fly (Glossina spp.) species in
southern Africa. For some subspecies (e.g. Glossina
morsitans centralis) the distribution was best correlated
with NDVI and the average maximum temperature
(75% correct predictions). Relative abundances of the
midge Culicoides imicola, the vector of bluetongue
virus and African horse sickness virus, at various sites in
Morocco and Spain, were compared with climatic
variables, altitude and NDVT of the same sites (Baylis
and Rawlings, 1998). No significant correlations were
found, although wind speed and NDVImin explained
over 50% of the variance in abundance. Using
broadband NOAA AVHRR data, Hay et al. (1998)
successfully correlated NDVI-series with malaria
presence in Kenya, and malaria admissions could be
predicted across Kenya in an average year with
regression analysis. NOAA AVHRR data of a site in
Brazil (Bavia et al., 2001) and sub-Saharan Africa
(Kristensen et al., 2001; Malone et al., 2001) was
similarly used to produce NDVI maps, and analyzed for
relationships with the prevalence of schistosomiasis,
hosted by snails. Results indicated that NDVI, together
with climate data, predicted snail distributions accu-
rately enough for schistosomiasis risk assessment.

As in the case of habitat characteristics used to
predict species distribution, the use of NDVI has a
strong emphasis on insects considered a pest and those
that act as vector diseases, thus there is a lack of
conservation-oriented studies for species which are not
considered as pests. The use of NDVI has proven to be
successful, however it depends directly on the species
life history and ecology whether NDVI can act as a
surrogate itself or in combination to other remotely
sensed data.

3.5. Summary

The approach of assessing species distribution and
richness through spatial heterogeneity based on primary
production, can be considered as a functional, non-
discrete correlation. Here, animal occurrence and
diversity are related to terrestrial features by means
of an ecological link. The link emphasised in this review
is a trophic one (i.e. food-related), e.g. the case of
herbivore animals being correlated with local vegeta-
tion biomass or primary productivity (Oindo, 2002:

Seto et al.,, 2004), and heterogeneity therein. The
heterogeneity hypothesis affirms a positive relationship
between ecosystems diversity and biological diversity
(Simpson, 1949; MacArthur and Wilson, 1967; Lack,
1969; Huston, 1994). The spatial and temporal
heterogeneity in primary productivity is an explanatory
variable to assess species occurrence and richness.

Although successful in some studies (Zinner et al.,
2001; Ito et al., 2005), difficulties to correlate NDVI and
animal distribution of less abundant mammal species
(Verlinden and Masogo, 1997) remains unsolved.
Moreover, the biomass-based approach is successful
only with species sensitive to differences across an area.
More elaborate studies, including additional explana-
tory environmental variables together with primary
productivity heterogeneity (e.g. landscape diversity,
evapotranspiration, land surface temperature, rainfall,
altitude), explained considerable variation in species
richness, but — here too — the explanatory power of each
variable differed among spatial scales (Robinson et al.,
1997; Baylis and Rawlings, 1998; Hurlbert and Haskell,
2003; Hawkins et al., 2003; Hawkins, 2004; Bailey
et al., 2004). :

One of the factors influencing the accuracy of
predictions of species richness using primary produc-
tivity indicators (NDVI) is scale or resolution, where the
variation of species diversity — within and between taxa
— is better explained using a specific scale, e.g. finer
spatial resolution, whereby other variables explains
more of the variation at another scale, e.g. coarser
spatial resolution (Bailey et al., 2004; Cushman and
McGarigal, 2004; Hawkins et al., 2003; Lee et al., 2004;
Hurlbert and Haskell, 2003). Another aspect leading to
ambiguous accuracy is that the results are based on
NDVI and other environmental variables, such as (e.g.
average maximum temperature, rainfall, altitude) where
the independent marginal effect of each variable is
unknown. However, this conditional effect can be as
high as 50 to 75% of the explained variation (Baylis and
Rawlings, 1998; Robinson et al., 1997).

The major drawback of using vegetation NDVI,
however, is the asymptotical approach to a saturation
level above a certain biomass density and leaf area
index (Tucker, 1977; Sellers, 1985; Todd et al., 1998;
Gao et al., 2000;), and has therefore limited value in
assessing biomass during, for example, the peak of
seasons (Thenkabail et al., 2000). This problem could
be overcome by using more recent remote sensing
products and techniques, such as the enhanced
vegetation index (EVI) from the MODIS product suite
(Huete et al., 2002). The EVI was developed to optimize
the vegetation signal with improved sensitivity in high
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biomass regions and improved vegetation monitoring
through a de-coupling of the canopy background signal
and a reduction in atmosphere influences. Further,
several studies explored the possibilities of narrow band
vegetation indices for biomass estimation at high
canopy density: Todd et al. (1998) and Clevers and
Jongschaap (2001) reported a widening and deepening
of the red absorption pit with an increase in biomass.
Mutanga and Skidmore (2004a) successfully estimated
biomass based on band depth analysis for densely
vegetated areas where NDVI values reached an
asymptote. In a similar approach it was demonstrated
that imaging spectrometer data enhance the estimation
of forest stand variables (leaf area index and crown
volume) compared to broadband multispectral data
(Schlerf et al., 2005).

As indicated above, novel indices developed as
proxies for biomass and primary productivity, which are
based on spectrometer data, encompass the capability of
moving beyond conventional NDVI analysis, particu-
larly suitable for identifying habitats in heterogeneous,
densely vegetated areas.

4. Assessing species richness through temporal
heterogeneity '

Ecoclimatic dynamics are highly complex, ranging
from the impact of changing weather, seasonal variation
in climate, including interannual cycles, to climate
changes such as the global Pleistocene glacial periods.
Seasonal variations in climate govern differences in
plant species growth and establishment patterns,
leading to changes in species composition and
distributions (Hobbs, 1990). Consequently, annual
variations in vegetation can induce changes in the
spatial distribution of plant phenology and growth
(Tucker and Sellers, 1986). Therefore, analysis of multi-
annual land cover data potentially provides a key to
understanding the influence of climate variability on
shaping ecosystems—which form the overarching
hierarchical layer in biodiversity assessment. Contin-
uous data to study ecoclimatic dynamics are available
from 1980, with the establishment of the AVHRR
meteorological satellite series. The coefficient of
variation of AVHRR-derived NDVI data for a number
of years indicates the relative variability of the
vegetation cover for a given region. Consequently,
regions with a high coefficient of variation should
reflect large variations in vegetation composition and
growth, following unstable and unpredictable climatic
conditions over a number of years. On the other hand,
low coefficients of variation should indicate regions

with small variations in vegetation composition and
growth. The use of temporal heterogeneity as a proxy is
limited to a small number of studies, therefore all taxa
are treated within the same chapter.

Species richness and abundance of large mammals in
Kenya were correlated with yearly variation in
vegetation, as assessed by the interannual variation of
the maximum AVHRR-derived NDVI (Oindo, 2002). In
line with the findings above, maximum numbers of
species were found in regions with current ecoclimatic
stability. These studies support the hypothesis that high
species diversity occurs in stable, predictable environ-
ments (Sanders and Hessler, 1969; Fjeldsa and Lovett,
1997).

Fjeldsa et al. (1997) correlated interannual varia-
bility of NDVI with biodiversity ‘hotspots’ of tropical
Africa, linking local endemism with local ecoclimatic
stability. Similarly, Fjeldsd et al. (1999) correlated
interannual differences in NDVI with endemism of 789
Andean bird species, thereby linking biodiversity with
short-term and long-term ecoclimatic stability. Their
results suggest that high ecoclimatic stability allows
species to ‘accumulate’ in an area, whereas large
interannual variation limits the community to species
able to withstand large fluctuations in habitat quality
resulting from interannual climatic variation.

Rodriguez et al. (2005) used regression analyses to
examine the relationship between reptile and amphibian
species richness and a set of environmental variables
related to five hypotheses for geographical patterns of
species richness based on productivity, ambient energy,
water—energy balance, habitat heterogeneity, and cli-
matic variability. For reptiles, annual potential evapo-
transpiration (an index of atmospheric energy)
explained 71% of the variance. For amphibians, annual
actual evapotranspiration (an index of the joint
availability of energy and water in the environment),
and the global vegetation index derived from satellite
data, both described about 60% of the variance. Their
results were consistent with reptile and amphibian
environmental requirements, where the former depend
strongly on solar energy, and the latter on both warmth
and moisture for reproduction. On a somewhat different
vein, Carey et al. (2001) attempted to identify the causes
of amphibian declines around the globe. Four relatively
undisturbed areas in northeastern Australia, Costa Rica-
Panama, central Colorado, and Puerto Rico were chosen
for examination of environmental correlates coincident
with mass mortalities at these localities. They compiled
a database including descriptions of 120 localities, both
at which declines have been documented and at which
no declines were known at the time. For each locality,
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the number of species, dates and degree of declines,
habitat characteristics, and other factors were provided.
The authors then used data predicted by models or
collected by satellites, airplanes, or direct sampling on
the ground to evaluate variations over time in
temperature, precipitation, wind direction, UV-B
radiation, and concentrations of contaminants. They
considered the variation in certain environmental
variables unlikely to have directly caused amphibian
deaths, but suggested that correlations between these
environmental changes and the occurrence of amphi-
bian die-offs need further investigation into synergistic
interactions among environmental variables and possi-
ble indirect causal relationships.

4.1. Summary

This approach assesses species richness based on
temporal heterogeneity, The multi-temporality of
habitat heterogeneity, indicated through the hetero-
geneity in NDVI, was suggested to be an appropriate
proxy to predict species richness patterns (Sanders and
Hessler, 1969; Fjeldsa and Lovett, 1997). The literature
review showed that temporal studies were mostly
performed across large regional areas. Further, con-
flicting results highlight the need to select relevant taxa
(refer to taxonomic resolution) and to tune the
methodology (Oindo and Skidmore, 2002). Even
though NOAA-AVHRR data currently offer the longest
time series, they are limited in their spatial and spectral
resolution. The variability in vegetation cover as
assessed using AVHRR data is the result of multiple
influences: intrinsic characteristics of climate such as
interannual variability in rainfall and temperature, long-
term climate trends, vegetation succession, anthropo-
genic land-cover changes, and variability in the state of
atmosphere (Fjeldsa et al., 1997). However, the
prospective for the temporal analysis is promising as
alternative long-term satellite data series evolve. In the
future, the combination of multitemporal satellite data
with historical meteorological, ecological and paleolo-
gical data has the potential of describing interactions
among seasonal, annual and long-term climate varia-
bility to understand species diversity. Multi-temporal
data offer possibilities to overcome the limitations of
‘static’ habitat studies needed for conservation pur-
poses. Given the fact that many species are extremely
mobile over time, e.g. migratory species, single-date
studies do not cover the complete range of their habitats.
In such cases only multitemporal data can provide a
more complete assessment of the species’ occurrence
and distribution.

5. Assessing species richness through
heterogeneity based on landscape structural
properties

Brokaw and Lent (1999) stated that, in general, the
more vertically diverse a forest is, the more diverse is its
biota. Remote sensing has the potential to estimate
structural properties and assess their heterogeneity.
Most studies relating remote sensing derived structural
properties to animal diversity relied on height measur-
ing technologies such as airborne lasers (i.e. airborne
LiDAR) and Synthetic Aperture Radar (SAR). They are
tools to map vegetation height and its variability, field
boundary height, shape of individuat agricultural fields,
fractional vegetation cover, and aboveground biomass
(e.g. Ritchie et al.. 1995; Blair et al., 1999; Lefsky et al..
2002; Lim et al., 2003; Mason et al., 2003; Santos et al.,
2003; Lefsky et al., 2005).

Recently, Nelson et al. (2005) analyzed LiDAR
measurements and video to identify and locate forested
sites that might potentially support populations of a
mammal, the Delmarva fox squirrel (Sciurus niger
cinereus). Results indicated that the largest part of the
area (78%) met certain minimum length, height, and
canopy closure criteria to support squirrel populations.
This is the only study addressing a faunal taxa other
than the avifauna. »

Beier and Drennan (1997) demonstrated that North-
ern Goshawks (Accipiter gentilis) selected foraging
sites based on structure rather than on prey abundance,
while (Jansson and Andrén, 2003) found that forest
structure is related to species richness. Imhoff et al.
(1997) used SAR and aerial photography to map
vegetation heterogeneity and relate this to field studies
of bird abundances in Australia’s Northern Territory.
The abundances of individual species changed sig-
nificantly across floristic and structural gradients,
implying that bird habitat can be predicted from SAR
data. Hinsley et al. (2002) and Hill et al. (2003) used an
airborne laser scanning (ALS) system to map forest
structure and related canopy heights to chick mass (i.e.
nestling weight), a surrogate for breeding success,
which, in turn, is a function of ‘territory quality’. They
found that, for one species, chick mass increased with
increasing forest canopy height, and for a second
species, chick mass decreased. Hence, Hill et al. (2003)
concluded that airborne laser scanning data can be used
to predict habitat quality and to map species distribu-
tions as a function of habitat structure. Davenport et al.
(2000) devised a technique to measure the height of
crops in farmland fields using LiDAR scanning, as crop
height is an important predictor of bird species
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population and, in turn, can be used as a proxy for bird
suitability. Using a population model of skylark (Alauda
arvensis) they concluded that the achieved structural
accuracy — less than 10 cm — would be sufficient to
discriminate suitable from unsuitable habitat from
LiDAR data. Incorporating high resolution multi-
spectral images, these techniques can be used over
large geographical areas and could therefore have wide
application in ecological monitoring of change in
habitat structures and the associated effects on wildlife
(Mason et al., 2003).

5.1. Summary

The fourth approach, assessing species richness
through heterogeneity based on landscape structural
properties, involves the assessment of species diversity
using structural properties of habitat heterogeneity. This
is a more complicated approach that not only relies on
primary productivity and its heterogeneity, but also on
structural properties of ecosystems. Vegetation height,
height variability, percent canopy cover, and above-
ground biomass are structural properties defining
habitat heterogeneity (e.g. Ritchie et al., 1995; Blair
et al., 1999; Lefsky et al., 2002, 2005; Lim et al., 2003;
Santos et al., 2003). Such structural habitat properties
were successfully correlated to species distributions
(Imhoff et al., 1997; Brokaw and Lent, 1999; Hinsley
et al., 2002; Jansson and Andrén, 2003; Hill et al.,
2003). In addition to the applied laser and radar systems,
optical multiangular sensor products (e.g. from the
Multiangular Imaging SpectroRadiometer (MISR))
describing structural properties, such as the leaf area
index and leaf angle distribution have the potential to
contribute to the assessment and monitoring of
terrestrial faunal species richness. In addition to more
traditional approaches, the use of structural character-
istics of habitats, their change and influence on faunal
species distribution has a high potential for further
studies covering large geographical areas (Nelson et al.,
2005).

6. Assessing species richness through
heterogeneity based on plant chemical
constituents

Animal species have a preference for the spatial and
structural composition of habitat, but another attractant
is the forage quality that an animal perceives in that
habitat. Studies in the African savannah demonstrated
that the occurrence and spatial distribution of many
wildlife species is influenced by the variation in grass

quality (Grant et al., 2002 Heitkonig and Owen-Smith,
1998; McNaughton, 1988). Techniques that can
estimate canopy quality on a large scale appear
relevant in understanding wildlife diversity. Broadband
satellites such as Landsat TM or SPOT lack the
potential to capture detailed spectral features needed to
detect or estimate the concentration of chemical
constituents. Alternatively, imaging spectrometers
can measure canopy reflectance in narrow and
contiguous spectral bands in a wide wavelength range
(e.g. 400-2500 nm). A wide range of plant compounds
and their concentration can be identified from the many
subtle absorption features of the spectrometer data
(Curran, 1989; Elvidge, 1990). The relationships with
spectral properties and foliar chemicals, nitrogen
amongst others, have been studied from dried and
fresh leaves (e.g. Grossman et al., 1996; Dury and
Turner, 2001), to entire canopies (e.g. Jago et al., 1999;
Curran et al., 2001). However, there are many
complicating factors to consider when estimating
biochemicals of entire canopies. These include the
masking effect of leaf water absorption (Fourty and
Baret, 1998), the complexity of the canopy architec-
ture, variation in leaf internal structure and directional,
atmospheric and background effects. Several methods
were developed to maximize sensitivity to the
vegetation characteristics while minimizing confound-
ing factors, including band ratios, difference indices,
and derivative analysis (e.g. Huang et al., 2004;
Schmidt and Skidmore, 2004).

Regarding forage quality assessment as proxies for
animal studying, McIlwee et al. (2001) investigated the
utility of in situ reflectance spectroscopy as a means of
rapidly assaying chemical constituents of leaves of four
Eucalyptus species to predict herbivory by greater
gliders (Petauroides volans) and common ringtail
possums (Pseudocheirus peregrinus). Resulting con-
centrations of nitrogen, neutral detergent fibre, con-
densed tannins and total phenolics, and thus leaf
palatability, were predicted accurately and were
consistent with documented food preferences of greater
gliders. Dury et al. (2001) estimated concentrations of
nutrients in Eucalypt tree foliage using airborne
imaging spectrometer data. They determined secondary
compounds of the group diformylphloroglucinols
known to be deterrents for herbivores. Consequently,
they derived palatability of Eucalypt leaves for
foliovorous marsupials to map potential koala and
possum habitats.

Mutanga et al. (2004a) investigated the ability of
field spectroscopy to discriminate different levels of
sodium concentration in grass, as sodium is a scarce
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element needed and sought by mammals (e.g. Brady
et al., 2002; Grant et al., 2002). Using field spectrometer
measurements of pasture grass, they were able to detect
several sodium concentrations. They concluded that
with the knowledge of grass species distribution,
imaging spectrometer data would help to understand
the distribution of mammals in nutrient limited
savannas. This approach was successfully applied to
large geographical areas linking forage quality to
species richness and distribution particularly in areas
with limited nutrients (Ferwerda, 20053).

6.1. Summary

This last approach is based on the use of plant
chemical constituents to define habitat heterogeneity
and ultimately assess and predict species richness.
Attractants and deterrents related to the structural and
trophic composition of habitat are important criteria to
be considered in habitat-species associations. These
attractants can be forage quality (Grant et al., 2002;
Heitkonig and Owen-Smith, 1998; McNaughton, 1988).
Consequently the estimation of forage quality is
essential to understand species richness patterns.
Imaging spectroscopy with its ability to record reflected
radiance in narrow spectral bands, allows the detection
and quantification of canopy biochemical components.
The overview of these initial studies demonstrated the
utility of imaging spectrometer data to map foliar
nutrient concentration in savannas and woody ecosys-
tems. The above mentioned studies provide a first step
towards understanding the movement and distribution
of wildlife, particularly in areas where herbivorous
wildlife is known to be limited by nutrients. The
correlations between animal presence—abundance/habi-
tat and forage quality were consistent with results
derived from imaging spectroscopy; Mcllwee et al.,
2001; Mutanga et al., 2004a.b), whilst other studies
successfully upscaled those correlations to large
geographical areas (Dury et al., 2001; Mutanga and
Skidmore, 2004b), particularly in areas with limited
nutrients (Ferwerda, 2005).

Some authors recommended that future studies
should focus on monitoring seasonal changes in foliar
nutrient concentration as well as extending the method
to predict other macro nutrients (P, K, Na, Mg, Ca) and
secondary compounds in both grass and tree canopies.
Nevertheless, a major constraint remains that foliar
chemicals contribute only a little to the canopy optical
properties. Radiative transfer models incorporating the
involved optical mechanisms at varying complexity
have some success at biochemical parameter retrieval

(e.g. Jacquemoud et al., 2000; Kotz et al.,, 2004);
however, typically many inputs of canopy parameters
are required. At the current stage extensive in situ
investigations on spectral features of attractants and
deterrents of forage and their influence on faunal
species distributions is a prerequisite to successfully
upscale these findings to large areas for monitoring and
conserving faunal species.

7. Conclusion

It is important for conservation purposes to generate
consistent and reliable information about species
distribution and diversity in order to develop plans
for species protection and sustainable use (Riede,
2000). Remote sensing is generally regarded to be able
to contribute to this aim, mainly by its ability to provide
continuous spatial information. It is rapidly developing,
capable of coping with environmental heterogeneity —
and thus biodiversity — in its broadest range, by
measuring increasingly detailed variation on a spatial,
temporal, and structural scale, and recently by measur-
ing variation in biochemical composition. This devel-
opment is clearly highlighted in the presented review.

A major issue complicating the assessment of
species occurrence and richness across all techniques
is the mobility of faunal species, especially migrants
which can move long distances occupying a wide range
of natural and anthropogenic habitats. Techniques used
in plant oriented diversity studies are generally based on
characteristic spectral reflectance features of plant
species or plant communities. For this purpose, objects
need to be sessile to be accurately assessed. The
techniques of remote sensing that have aided the studies
on plant species distribution and diversity cannot be
applied to animal studies in a similar fashion. Although
commercial satellites with 61 cm pixel size are now
capable of locating elephants in Kenya’s Amboseli
National Park and surrounding ecosystem (see, €.g.
http://media.digitalglobe.com/file.php/binaries/51/
AmboseliF.pdf), most animal species remain undetect-
able. The often cryptic existence of fauna poses an
additional general problem, akin to that of undergrowth
species in vegetation.

Table 1 presents a summary of the various
approaches discussed in this paper, including aspects
of methodology, data requirements, techniques
involved, and the biodiversity aspects covered. Most
of the earlier studies on the application of remote
sensing to biodiversity research were published in
ecological, rather than remote sensing journals. This
review is mainly based on peer-reviewed literature.
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Two main biases can be identified in the selected studies:
a strong emphasis on NDVI-based approaches and on
spaceborne sensor data. The development and applica-
tion of new remote sensing techniques and products
appears to undergo a lag time before they enter the realm
of ecological research. We acknowledge that new
methodologies (e.g. narrow-band vegetation indices),
and less operational systems (e.g. airborne imaging and
in situ spectroradiometers, lidar) have a high potential to
provide a new generation of vegetation products
representing proxies to estimate animal distribution.

A more recent —and most promising — development in
terms of methodology was observed in the assimilation of
remote sensing data in ecological species distribution
models. Although the reviewed papers mostly emphasise
the composition and functional part of animal biodi-
versity and distribution, rather than population structures,
for instance, it is expected that the approaches described
here, particularly those with an emphasis on functional
ecological relationships, will aid in the ultimate goal of
biodiversity conservation.

Finally, this review has focussed on the use of remote
sensing for estimating terrestrial animal distribution and
diversity. Geostatistical methods are more and more
being used incorporating remote sensing and field
measurements. The use of ancillary data such as
climate, terrain, soils, human infrastructure and
footprint, access to water and so on, have been
extensively used in geographic information systems.
Many of these GIS modelling exercises also incorporate
remotely sensed imagery. Corsi et al. (2000) provide an
overview of these models and ancillary data sources.
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