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Executive Summary 
 The decline of Nearctic-Neotropical migratory birds over the last two-decades remains one 
of the most pressing issues in conservation biology. The DoD manages 25 million acres of land 
and has the joint responsibility of managing these high-quality forest, desert, prairie, and other 
lands while concurrently engaging in military readiness activities that can alter the structure and 
function of those habitats. Given that forest loss and fragmentation threaten terrestrial biodiversity 
worldwide, it is critical for DoD to understand what species are affected by these processes. 
Among vertebrate taxa, the DoD has taken an active role in the conservation and management of 
Neotropical-Nearctic migratory birds. DoD properties serve as critical habitat for several avian species 
of concern with many installations having been designated as Important Bird Areas. For continued 
effective management of migratory bird populations on DoD installation, both the spatial and 
temporal changes in distribution and dynamics of avian populations must be actively monitored.  
 Characterizing how populations are spatially structured by demographic processes across 
heterogeneous habitats (source-sink dynamics) remains an important monitoring tool. High 
quality, source habitats typically yield a demographic surplus where births exceed deaths, and 
emigration exceeds immigration, whereas low quality, sink habitats generate demographic deficits 
where deaths exceed births and immigration exceeds emigration. To date, a variety of approaches 
that vary greatly in effort and data resolution have been used to determine population growth 
trajectories and persistence probabilities. This hierarchy of methodological approaches includes: 
1) point-counts that provide coarse demographic data on distribution, abundance, and richness and 
can be implemented over large spatial-scales with low unit effort, 2) Monitoring Avian 
Productivity and Survivorship that provide higher resolution demographic data on some vital rates 
(e.g., survival), but are limited in scale largely because of unit effort and, 3) intensive demographic 
monitoring that can provide high resolution demographic data on most vital rates, but is also 
limited in spatial monitoring extent and requires the greatest unit effort.  

In order to implement cost-effective management of avian populations, DoD land 
managers need comparative information about the efficacy of different avian monitoring protocols 
and the spatial scale at which they can characterize population dynamics. Avian point-counts and 
occupancy modeling have become a widespread tool used to indirectly categorize sources and sink 
habitats and while these tools have been shown to be effective for detecting population change at 
a regional scale, less is known about their reliability for quantifying local population dynamics. 
The DoD has used the Monitoring Avian Productivity and Survivorship (MAPS) monitoring 
protocols on their installations to generate indices of fecundity, estimates of density, and apparent 
survival, but the ability of this approach to accurately quantify source-sink dynamics at a scale 
relevant for management have yet to be tested. In contrast to point-counts and MAPS, intensive 
demographic monitoring has long been the gold standard for estimating population growth ( ), but 
this approach is both labor intensive and can be cost probative. Although intensive demographic 
approaches have been widely used to estimate lambda, the majority of these models have focused 
solely on breeding season vital rates, despite growing evidence about the importance of non-
breeding season demography on population dynamics. To date, no studies have compared how 
these hierarchical approaches perform for characterizing source-sink dynamics and to identify the 
factors that drive population persistence.  
 A second element of effective management is the ability to link demographic vital rates 
and the subsequent growth of populations to both local habitat quality and landscape configuration. 
Past work on DoD installations in the Midwest, indicate that forest amount is often a good predictor 
of demographic performance measures for a number of Neotropical migrant birds. Although this 
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work provided essential baseline data, it did not provide information on the relative contribution 
of local and landscape factors to population growth. This work also was unable to decouple the 
relative contribution of habitat amount vs. habitat fragmentation on the distribution and 
demography of birds in managed landscapes. Achieving these goals may require diverse 
monitoring approaches because demographic vital rate data can only be collected on finer spatial 
scales while distribution, richness, and abundance data must be collected at much larger spatial 
scales. Regardless of scale, studies that inform how habitat quality (i.e., amount and fragmentation) 
shape the contributions of overall distribution, abundance and demography to population growth 
as well as which aspect of landscape structure are most critical to population persistence, are 
essential for proactive conservation. Ultimately, understanding these relative contributions can 
inform how resource managers allocate resources towards fine-scale habitat protection and 
management vs. base wide or even larger regional management strategies to conserve avian 
populations. 
 Here, we describe a multi-institutional collaboration (Smithsonian, Institute for Bird 
Populations, Oregon State University and US Army Engineer Research and Development Center) 
funded by SERDP (RC-2121) with two primary aims: 1) to validate and test the performance of 
three avian sampling approaches (point-counts, MAPS and intensive demography) to characterize 
source-sink dynamics, and 2) to determine which local and landscape factors influence 
distribution, demography, and overall population persistence on both DoD installations as well as 
in surrounding landscapes. This research was carried out at Jefferson Proving Ground (now Big 
Oaks National Wildlife refuge), NSA Crane, and within surrounding Indiana state forests and 
parks. Given the limitations of collecting intensive demographic data for multiple species, our 
work primarily focuses on Wood thrush (Hylocichla mustelina), a DoD species of concern. Where 
possible, we use the larger spatial scale data from point-count sampling and MAPS to assess the 
factors that influence demographic performance and population persistence for specific species of 
concern and the broader community of birds.  

The report is organized into four chapters that address the projects broad objectives. 
Chapter one provides detailed results on the point-count and occupancy component of the research. 
This chapter first assesses the impact of temporary emigration on occupancy models’ ability to 
characterize population dynamics, and second, applies occupancy models to quantify the 
independent effects of habitat amount, fragmentation, and their interaction on dynamic avian 
distribution patterns. These results will provide the DoD useful information about how to sample 
and model dynamic distributions of unmarked animal communities, identify local and landscape 
features that have positive and negative effects on forest bird communities, and provide 
information about occurrence “hotspots” on and around military bases for avian species of 
concern. Chapter two provides detailed results for MAPS constant effort mist-net monitoring. This 
chapter characterizes two key vital rates (survival and fecundity) for modeling population growth, 
compares those rates to those derived from intensive demographic monitoring, and assesses the 
local and landscape predictors of Wood thrush productivity. These results provide essential 
information on the accuracy of previously collected vital rate data on DoD installations and 
identify the landscape features that drive regional Wood thrush productivity. These results also 
provide essential information about the spatial scale of inference for MAPS measures of 
productivity and how they should be applied to management decisions. Chapter three reports on 
the intensive demographic monitoring component of the research. This chapter details a full-annual 
cycle integrated population model that provides key vital rates (survival, fecundity, immigration, 
etc.) for both multiple age classes and across the breeding and non-breeding season. This chapter 
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specifically addresses the role of immigration, and to a lesser extent emigration, in source-sink 
dynamics. Model results are used to understand the relative contribution that different vital rates 
make to population growth. In addition, the chapter also details the key drivers of habitat specific 
demography and how these variable demographic rates differentially contribute to population 
dynamics. These results provide the DoD an essential understanding of which vital rates drive 
population growth, how those processes vary with habitat quality, and details the role of breeding 
vs. non-breeding season population limitation. Chapter 4 is a synthesis of results from the first 
three chapters. This chapter specifically compares population growth estimates from the hierarchy 
of approaches (low resolution and effort counts to high resolution and effort intensive 
demography) to assess the accuracy and precision as well as the scale at which each approach can 
inform population dynamics. In addition, we discuss the pros and cons of each methodological 
approach and their utility for assessing changes in population growth. Given that self-recruitment 
rate is the best indicator of population persistence, this chapter reviews which local and landscape 
features best predict the contribution of each local Wood thrush population. Finally, we compare 
the results from the occupancy modeling and demographic monitoring to broadly discuss the 
relationships between distributional patterns and population dynamics for a suite of passerine 
species on DoD installations. 
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Chapter 1- Using dynamic occupancy and species distribution models to 
understand species sensitivity to landscape configuration 

 
Abstract 

During the breeding seasons of 2011-2014 we conducted avian point counts on two DoD 
installations in southern Indiana (NSA Crane and Big Oaks National Wildlife Refuge) and 
surrounding areas in order to identify the effects of forest structure on breeding bird distributions 
and temporal dynamics.  Point count stations were selected to: 1) reduce correlation between the 
size of the forest patch in which the point was located, and the amount of forest within 2 km of the 
point, and, 2) adequately sample demographic plots monitored by Smithsonian Institution 
personnel (Chapter 3).We used a popular sampling protocol designed with the intention of 
allowing us to model dynamics both within and among breeding seasons with dynamic occupancy 
(MacKenzie et al. 2003) and abundance (Dail & Madsen 2011) models.  These approaches rely on 
Pollock’s (1982) robust sampling design and an assumption of site closure over repeated secondary 
sampling periods nested within primary sampling periods (between which dynamic rates are 
estimated).  Initial exploration of our data led us to question whether the dynamic processes being 
modeled within breeding seasons in fact represented distributional shifts, or temporary movements 
in and out of our sample areas due to temporary emigration (TE).  Thus, we first used simulated 
and empirical point count data to test the hypothesis that TE can confound estimates of dynamic 
rates within breeding seasons.  Data simulations indicated that when TE occurred randomly and 
independently on each sampling occasion, dynamic rate estimates were highly accurate and 
precise.  However, when secondary sampling periods were closed to TE, tests for population 
dynamics, and dynamic rate estimates were biased.  In empirical datasets, we found evidence of 
population dynamics within a single breeding season for all species when primary sampling 
periods occurred in immediate succession (i.e., 3 samples within 10 minutes).  However, our 
results suggest that this is because estimates of population dynamics were heavily influenced by 
TE rates, and thus we were only able to model dynamic rates between breeding seasons. 
 Using dynamic occupancy models (MacKenzie et al. 2003) we then quantified the effects 
of forest patch size and forest amount on the probability of initial site occupancy, and inter-annual 
colonization and extinction rates for 30 species.  In all models, we controlled for variability in 
local vegetation characteristics and edge distance to ensure that any effect sizes could be attributed 
to the landscape variables themselves.  Initial occupancy of 16 species was significantly influenced 
by one or more of our landscape variables (habitat amount, patch size, or their interaction).  
However, landscape variables only had a significant effect on colonization rates for 6 species and 
extinction rates for 11 species.  Further, the direction of many of these effect sizes was opposite of 
what would be predicted by ecological theory.  There are many possible explanations for these 
results, the most likely of which is that defining “habitat” by forest patch boundaries is likely an 
oversimplification for many species. 
 We then used community occupancy models to investigate the impacts of local and 
landscape variables on community structure and composition.  By modeling communities using 
this approach, we were able to estimate species richness while accounting for imperfect detection, 
identify life history traits that are more sensitive to forest loss and fragmentation, and borrow 
information from common species to estimate factors influencing the distribution of rare and 
cryptic species.  Community occupancy models revealed that fragmentation did not negatively 
impact species richness, and in fact, had a positive effect on many species, particularly those that 
prefer edge habitat.  However, all forest interior specialists, which tend to be of greater 
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conservation concern, were negatively impacted by reduced patch sizes stemming from 
fragmentation.   
 As a final step, we developed species distribution models (SDMs) for 30 species.  SDMs 
were constructed by modeling observed point count data as a function of explanatory variables 
extracted from Landsat 5 TM imagery using boosted regression trees (BRTs).  The BRTs for 18 
of these species performed well when tested against held-out validation data (AUC ≥ 0.7), and 
thus we used them to produce region-wide, spatially-explicit maps of occurrence probability.  
These maps will be useful to DoD for identifying biodiversity hotspots, or high probability use 
areas for species of interest in southern Indiana.  In the future, we intend to use these spatially-
explicit models to refine our estimates of the effect of forest loss and fragmentation on bird 
distributions and dynamics. 
 

Objective 
In this chapter, we begin by combining simulated and empirical avian point count data to 

investigate the impacts temporary emigration (TE) may have on dynamic population models for 
samples of unmarked animals.  We then test for the independent effects of habitat amount, 
fragmentation, and their interaction on dynamic avian distribution patterns while accounting for 
variability in local vegetation and edge effects.  Lastly, we combine our point count results with 
Landsat Thematic Mapper imagery to generate species distribution models for common breeding 
birds in southern Indiana.  The goals are to: 1) provide DoD useful information about how to 
sample and model dynamic distributions of unmarked animal communities, 2) identify landscape 
features on and around military bases that have positive and negative effects on forest bird 
communities, and 3) provide information about occurrence “hotspots” on and around military 
bases for avian species that may be of DoD concern.  
 

Background 
Habitat loss and fragmentation are some of the greatest threats to terrestrial biodiversity 

worldwide (Wilcove et al. 1986; Noss 1991; Pimm et al. 1995; Pimm & Raven 2000).  Forests 
have been particularly hard hit by these processes, as 70% of the remaining forest in the world is 
now located within 1 km of the forest’s edge (Haddad et al. 2015).  Habitat loss refers to changes 
in landscape composition, while fragmentation per se refers to the breaking apart of contiguous 
habitat (Fahrig 2003; Hadley & Betts 2016).  Though these processes often occur simultaneously, 
they can have unique effects on species populations, and distinguishing between these two aspects 
of landscape structure is fundamental to metapopulation dynamic theory (Hanski & Ovaskainen 
2000), reserve design, and conservation of biodiversity in managed landscapes (Lindenmayer & 
Fischer 2007). 

The deleterious effects of habitat loss are intuitive because landscapes with less suitable 
area can support fewer individuals.  Fragmentation, on the other hand, alters the geometry of the 
landscape, resulting a larger number of habitat patches that are smaller and more isolated than in 
contiguous landscapes (Fahrig 2003).  A combination of island biogeography (MacArthur & 
Wilson 1963; 1967) and metapopulation (Levins 1969; Hanski 1998) theory predicts that patch 
occupancy rates for individual species should decrease under these conditions because smaller 
populations (contained by smaller patches) are more likely to go locally extinct due to stochastic 
events, and less likely to be re-colonized from other patches due to isolation (Hanski 1998).  For 
decades, researchers have been examining how species are distributed across fragmented 
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landscapes, and to date, there is relatively little congruency between empirical presence-absence 
data and theoretical predictions (Prugh et al. 2008).   

Multiple hypotheses have been proposed to explain this discrepancy.  In their review of 
patch size and isolation effects on species occupancy, Prugh et al. (2008) conclude that the most 
likely explanation for the low predictive performance of these variables is that the patches-as-
islands paradigm is often an oversimplification of terrestrial landscapes.  The reasoning is two-
fold.  First, unlike in island-ocean systems where the edges of potential habitat are easily 
identifiable, terrestrial landscapes are often characterized by biotic and abiotic gradients (Austin 
1985; McIntyre & Barrett 1992; Wiens 1994; McIntyre & Hobbs 1999; Manning et al. 2004; 
Fischer & Lindenmayer 2006).  Second, habitat delineations (i.e., perceived patches or 
subpopulation units), as typically defined from a human perspective, may be poor categorizations 
at the species level.  The “fragmentation model” (sensu Fischer & Lindenmayer 2006) generally 
does not recognize that landscapes are perceived uniquely by different species (McIntyre & Barrett 
1992; McIntyre & Hobbs 1999; Haila 2002; Manning et al. 2004; Fischer & Lindenmayer 2006; 
Fahrig 2013; Betts et al. 2014), which is a concept widely accepted and rooted in niche theory 
(Grinnell 1917; Hutchinson 1957).  As such, generalized measurements of habitat configuration, 
as defined by humans and applied to multiple species, would certainly incorporate errors of 
omission or commission on a species-by-species basis.   

On the other hand, human-defined patch boundaries should be reasonable habitat 
delineations for some species.  For instance, Bender et al. (1998) found that patch size had a strong 
effect on population declines for habitat specialists, but not for habitat generalists.  Thus, when a 
species’ habitat requirements generally align with habitat designations, theory would still predict 
negative effects of fragmentation above and beyond habitat loss.  Fahrig (2013), however, recently 
argued that the effects of habitat loss overwhelm the effects of fragmentation per se, suggesting 
that in many cases the effects of patch size and isolation on species distributions could both be 
readily explained by habitat amount.  Alternatively, theoretical models suggest that fragmentation 
should only influence species distributions below critical thresholds in habitat amount (Lande 
1987; With & King 1999).  Indeed, in his review of studies investigating fragmentation effects on 
birds and mammals, Andren (1994) found that fragmentation per se only has a negative effect on 
species distributions once the amount of habitat in the landscape drops below 30%.  Above this 
threshold, the primary effect of fragmentation occurs through loss of habitat (Andren 1994; Fahrig 
2003; Fahrig 2013). 

Thus, despite thousands of studies, numerous questions remain regarding the effects of 
habitat loss and fragmentation on species distributions and dynamics.  One major reason for this 
is that, in many studies, habitat loss and fragmentation are confounded either conceptually or 
statistically.  In her landmark paper, Fahrig (2003) highlighted the necessity of distinguishing 
between these two processes and offered suggestions for how to do so in both experimental and 
observational studies.  In the more than a decade since this paper was published, only 18% of 
fragmentation studies control for the effects of habitat amount when investigating fragmentation 
effects (Hadley and Betts 2016).  Further, the majority of authors failed to define loss and 
fragmentation separately, instead regarding them as a single, indistinguishable process (Hadley 
and Betts 2016).  Such studies contribute little to our understanding of how fragmentation per se 
influences populations.  In addition, the process of fragmentation influences landscapes in multiple 
ways, such as by reducing patch sizes, increasing patch isolation, increasing the edge-area ratio of 
remnant patches, and altering microclimatic conditions (Saunders et al. 1991; Fahrig 2003).  Thus, 
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even in studies where the effects of fragmentation per se can be independently discerned, 
researchers often fail to identify the specific mechanism influencing distribution patterns. 

Lastly, under the patches-as-islands paradigm, theory predicts that changes in species 
distributions should be governed by local colonization and extinction events (MacArthur and 
Wilson 1963; 1967; Levins 1969; Hanski 1998).  However, many fragmentation studies fail to 
explicitly demonstrate the relationship between these dynamic processes and resulting species 
distribution patterns (Wilson et al. 2016).  Recently developed models (e.g. MacKenzie et al. 2003; 
Dail and Madsen 2011) rely on Pollock’s robust sampling design (Pollock 1982) to estimate 
dynamics of unmarked populations while accounting for imperfect detection.  This approach 
requires repeated samples within primary periods in which sites are assumed closed to 
distributional changes, allowing estimation of dynamic rates between these periods.  Recent 
studies have demonstrated that commonly used sampling protocols for birds (Rota et al. 2009; 
McClure & Hill 2012), salamanders (Otto et al. 2013), anurans (Kendall et al. 2013), and insects 
(Bried & Pellet 2012) violate the repeated sampling closure assumption, leading to widely touted 
recommendations that repeated samples be conducted very close together in time (MacKenzie & 
Royle 2005; MacKenzie 2005; Rota et al. 2009; Kendall et al. 2013).  However, under this 
approach, estimates of population dynamics may be confounded with rates of temporary 
emigration (TE; reversible changes in sampling availability), for instance, due to mismatches 
between the spatial scale of sampling and that of sampled animal territories (Figure 1.1; Nichols 
et al. 2009; Chandler et al. 2011; Efford & Dawson 2012).  To date, the degree to which TE can 
confound estimates of true population dynamics (births, deaths, and territorial changes), has not 
been tested. 

 
Materials and Methods 

Point Count Locations 
We selected point count locations using two different approaches to accommodate the 

diverse project goals.  The first set of point count stations are deemed forest patch stations.  For 
these, we began by digitizing all forest patches either completely or partially contained within the 
boundaries of all publicly owned lands (and some privately-owned lands we had access to) within 
1 hour’s drive from our field houses (Loogootee, IN and Madison, IN). These locations 
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were selected due to their proximity to two large DoD installations, NSA Crane, and Big Oaks 
National Wildlife Refuge.  We then used a stratified random sampling approach to select point 
count station locations while minimizing correlation between forest patch size and the amount of 
forest within 2 km (habitat amount) of the stations.  Habitat amount was calculated using the 2011 
USGS National Land Cover Database (Homer et al. 2015).  We selected 202 unique forest patches 
ranging in size from 0.89 ha to 22,800 ha (median 12.02 ha), and placed between 1 and 10 point 
count stations in each, with smaller patches receiving fewer points.  In patches with multiple points, 
the first was placed approximately 50 m from the edge of the forest, and additional points were 
placed at 250 m intervals along a transect extending towards the center of the patch.  In all, we 
selected 490 point count stations on 22 different publicly and privately owned properties (Table 
1.1; Figure 1.2), and habitat amount ranged from 11.22% to 99.81% (median 63.51%).  Pearson’s 
correlation between habitat amount and log-transformed patch size was r = 0.22.  This placement 
method allowed us to 1) discern the independent effects of forest loss and fragmentation on bird 
species distributions, and 2) to evaluate whether any effects of patch size on distribution patterns 
could be explained by edge distance alone. 

The second set of points are deemed demographic plot stations.  These were placed 
systematically in a 200 m grid pattern on all demographic plots outlined by Smithsonian Institution 
personnel (Chapter 3).  In 2011, we established 164 point count stations on demographic plots (8-
19 per plot; Table 1.1; Figure 1.2).  In 2012, some demographic plots were expanded, and another 
29 point count stations were added to cover the supplemental area (193 total point count stations 

Figure 1.1 An example of the two processes that can lead to closure violations for mobile animals.  Temporary 
emigration stemming from within-territory movements (a) can complicate estimation of changes in site use resulting 
from births, deaths, or dispersal (b).  In (c), for instance, all samples within a single primary period (denoted by 
identical symbols) occur so close in time that TE only occurs between primary periods.  The resulting detection history 
(000 101 000) may be misinterpreted as an unused site that is colonized, then abandoned (d), even though the site 
is used continuously. 
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on demographic plots; 8-28 per plot).  Selection and placement of all point count locations was 
done using ArcGIS v. 10.2.2. 
 
Table 1.1 Distribution of forest patch and demographic plot point count stations across public and 
private lands sampled during the breeding seasons of 2011-2014.  Note that different numbers of 
points were sampled in each year (see text above).  The column labeled “Number” can be used to 
reference geographic locations of each property in Figure 1.2. 
 

Owner (Manager) Number Property Forest Patch Demographic Plot Total 
      
Davies-Martin Parks and Rec. Dept. 1 West Boggs Park 4 0 4 
DOD 2 NSA Crane 151 67 218 
DOD (USFWS) 3 Big Oaks NWR 25 64 89 
IDNR (Fish & Wildlife) 4 Crosley Fish & Wildlife Area 26 0 26 

 5 Glendale Fish & Wildlife Area 75 0 75 
 6 Hindostan Falls Public Fishing Area 4 0 4 

IDNR (Forestry) 7 Martin State Forest 8 17 25 
 8 Mt. Calvary Wildlife Management Area 4 0 4 
 9 Owen-Putnam State Forest 5 15 20 
 10 Selmier State Forest 5 0 5 

IDNR (Nature Preserves) 11 Violet and Louis J. Calli Sr. Nature Preserve 5 0 5 
IDNR (State Parks and Reservioirs) 12 Clifty Falls State Park 9 0 9 

 13 Hardy Lake 53 0 53 
 14 McCormick's Creek State Park 0 15 15 
 15 Spring Mill State Park 2 15 17 
 16 Versailles State Park 25 0 25 

Purdue University 17 Southeast Purdue Agricultural Center 15 0 15 
The Nature Conservancy 18 Chelsea Flatwoods Nature Preserve 9 0 9 

 19 Pennywort Cliffs 7 0 7 
 20 Sarah Lewis Gutherie Memorial Woods Nature Preserve 3 0 3 
 21 Thousand Acre Woods Nature Preserve 16 0 16 

U.S. Forest Service 22 Hoosier National Forest 39 0 39 
      

Total   490 193 683 
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Avian Sampling 
In 2011-2013 we conducted 3 avian point counts at each established station, and repeated 

visits to the same location were separated by approximately 2 weeks.  In 2014 we only sampled 
the 193 demographic point count stations.  These were also sampled 3 times, but the first two visits 
to each station were conducted within two mornings of each other, and the third visit was 
conducted 15 to 19 (median 17) days after the first. 

All point counts were conducted between 29 May and 18 July in each year, and between 
30 minutes before sunrise and 4 hours after sunrise in suitable weather conditions.  We used a 
popular sampling protocol (e.g., Betts et al. 2008; Rota et al. 2009; McClure and Hill 2011; Otto 
& Roloff 2012) where counts lasted 10 minutes and were divided into 3:20 intervals, during each 
of which observers recorded all birds seen or heard within 100 m. 

Vegetation Sampling
We conducted vegetation surveys at each location in both 2011 and 2013, and additional 

vegetation surveys in 2012 only at sites that had been visibly disturbed (e.g., by forestry practices), 
or newly established since 2011.  During a vegetation survey, we established one 5 m radius circle 
centered on the point count station, and another centered 30 m from the point count station in a 

Figure 1.2 Locations of all publicly and privately owned properties on which we conducted point count surveys during the breeding 
seasons of 2011-2014.  Property names can be identified by referencing the “Number” column in Table 1.1. 
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randomly chosen cardinal direction.  Within each vegetation survey plot we measured five broad 
vegetation metrics: 1) Frequency of trees in different size classes, 2) canopy cover, 3) shrub cover, 
4) vertical foliage density, and 5) leaf litter depth. Frequency of tree size classes was measured 
with a 2 BAF forester’s prism and a tree DBH tape. All trees with the survey plot were categorized 
as either deciduous or coniferous and placed into one of 4 DBH size classes (1-5 cm, 6-20 cm, 21-
30 cm and > 30 cm). We measured canopy cover using 10 samples from an Emlen tube (Emlen 
1966). We measured shrub cover as any foliage associated with woody vegetation < 2m above the 
ground. Four ocular estimates of percent cover were taken within each plot (< 0.5m, 0.5-1m, 1-2m 
and > 2m). Vertical foliage density was measured at four perimeter points in each cardinal 
direction. We specifically, used a 6m extendable pole that was sub-divided into 0.25m increments. 
Within each increment, we recorded whether or not any live woody vegetation (including stems, 
leaves, needles, branches, and tree trunks) contacts the pole. We measured leaf-litter depth at the 
same cardinal direction perimeter points as those used for vertical foliage density. At each point, 
a ruler was inserted into the leaf-litter until it reached the dirt and the depth of litter was measured 
to the nearest 0.5 cm. All metrics were averaged among the two plots at a point count station, and 
metrics measured in 2011 were also associated with 2012 for sites where no vegetation survey was 
conducted that year. 
 
Effects of Temporary Emigration on Estimates of Population Dynamics 

Repeated sampling approaches (e.g., MacKenzie et al. 2002; 2003; Royle and Nichols 
2003; Royle 2004; Dail and Madsen 2011) are widely used in wildlife studies because they allow 
researchers to quantify species distributions while simultaneously accounting for imperfect 
detection.  When using these methods, it is typically assumed that samples of spatially discrete 
units take place at a single instant in time, allowing for instantaneous estimates of abundance or 
occupancy (Nichols et al. 2009; Chandler et al. 2011).  However, as numerous authors have pointed 
out, the number of individuals exposed to sampling at any instant in time is often a subset of the 
number of individuals that use the site, also known as the site’s superpopulation (Kendall et al. 
1997; Kendall 1999; Nichols et al. 2009; Chandler et al. 2011; O’Donnell et al. 2015).  Each 
member of a site’s superpopulation has some non-zero probability of being exposed to the 
sampling effort, but individuals not exposed during a realized moment in time are called temporary 
emigrants. 
 If we define the superpopulation of a site as N0, and the probability of any individual being 
available for sampling as pa (the complement of the TE rate), then repeated sampling approaches 
typically estimate N0pa, abundance at a specific point in time (Nichols et al. 2009; Riddle et al. 
2010).  However, when the closure assumption is relaxed such that the superpopulation size 
remains constant, but the number of individuals available for sampling can change in a non-
Markovian way between visits, repeated sampling (Royle & Nichols 2003; Royle 2004) actually 
estimates N0 (Kendall 1999; Nichols et al. 2009).  Similarly, researchers can estimate use rather 
than occupancy from repeated presence/absence sampling under these conditions (MacKenzie et 
al. 2002; MacKenzie & Royle 2005).  Under this approach, detection probability is estimated as 
the product of pa and pd where pd is the probability of detection given availability (Kendall 1999; 
Nichols et al. 2009). 
 
Simulated Data 
 To investigate the effects of TE on estimates of population dynamics, we began with a 
series of simulated datasets.  We began our simulations with two explicit assumptions: 1) TE 
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occurs over finer time scales than population dynamics; and 2) the researcher is interested in 
quantifying population dynamics (as we are in this study).  We then simulated presence/absence 
and count datasets under two different robust-design sampling scenarios (Pollock 1982), one in 
which the researcher estimates site use (ψ0) or superpopulation size (λ0), and one aimed at 
quantifying occupancy (ψ = ψ0pa) or abundance (λ = λ0pa) during each primary period. 
 Each dataset contained 500 sites with nine sampling occasions.  In all datasets, use or 
superpopulation size was allowed to change every third sampling period.  For presence/absence 
datasets, we simulated the initial use (ψ0) of each site from a Bernoulli distribution with 
probabilities of 0.3 or 0.7.  Extinction of used sites was determined by a random draw from a 
Bernoulli distribution with probabilities of ε = 0.0, 0.2, or 0.4.  Colonization of unused sites was 
determined by a draw from a Bernoulli distribution with probabilities of γ where γ was calculated 
so the expected value of the site use rate remained constant.  In abundance datasets, the initial site 
superpopulation (λ0) of each site was drawn from a Poisson distribution with mean parameters of 
1 or 2.  The number of individuals continuing to use a site (apparent survival) during each 
subsequent primary period was determined by a random draw from a binomial distribution with 
probabilities of ω = 1, 0.8, or 0.6.  Recruitment events were drawn from a Poisson distribution 
with a mean parameter of φ, where φ was again calculated so the expected superpopulation size 
remained constant.  Note that here we are defining colonization and extinction as changes in site 
use, independent of temporary changes in availability.  Similarly, recruitment and apparent 
survival are defined as changes in superpopulation size.  Thus, the parameters γ, ε, φ, and ω 
represent the dynamic population rates of interest in the study. 
 On any given sampling occasion, whether any individual (count) or at least one individual 
(presence/absence) using the site was available for detection was determined by random draws 
from binomial or Bernoulli distributions (respectively) with probabilities of pa = 0.5 or 0.8.  Here, 
pa represents the complement of the TE rate.  In the use and superpopulation sampling scenarios, 
availability was independent on each sampling occasion, while in the occupancy and abundance 
scenarios availability could only change every third visit, allowing for instantaneous estimates of 
distributions within primary periods (Kendall 1999).  Lastly, whether each available individual 
(count) or at least one available individual (presence/absence) was detected was determined by a 
draw from a binomial or Bernoulli distribution with probabilities of pd = 0.5 or 0.8.  In all, we 
simulated 1000 presence/absence, and 1000 count datasets for each combination of 24 parameter 
values under each sampling scenario.  All datasets were generated using R (v. 3.1.2). 
 We fit static and dynamic presence/absence (MacKenzie et al. 2002; MacKenzie et al. 
2003) or count (Royle 2004; Dail & Madsen 2011) models to each of the respective 48,000 datasets 
using occu(), colext(), pcount(), and pcountOpen() functions in the unmarked R 
package (v. 0.10-6; Fiske & Chandler 2011).  Static models assumed no population dynamics 
between any visits and open models allowed distributions to change after every third visit.  We 
assumed site abundance was Poisson distributed in all count models and that there was no 
relationship between recruitment rate and apparent survival in dynamic count models. 
 We then tested for evidence for population dynamics in each dataset by comparing static 
and dynamic models.   Static presence/absence or count models are special cases of their dynamic 
counterparts where dynamic parameters are constrained to be either zero or one.  To formally test 
site closure, we calculated a test statistic as T = -2ln(Λ)  where ߉ is the ratio of the maximized 
likelihood for the static model to that of the dynamic model.  Because the null hypothesis here is 
that the dynamic parameters are on the boundaries of their parameter spaces, this test does not 
meet the regularity conditions for a likelihood ratio test.  Instead, this test statistic asymptotically 
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approaches a mixture ߯଴ଶ, ߯ଵଶ, and ߯ଶଶ distributions with mixing proportions equal to 0.5-δ, 0.5, and 
δ, where δ was calculated from the Hessian matrix of the dynamic model (Self & Liang 1987; Dail 
& Madsen 2011).  When δ could not be estimated (< 1% of comparisons), it was fixed at 0.5 to 
minimize the probability of rejecting the null (static) model.  We accepted a P-value of < 0.05 as 
evidence for population dynamics. 
  For each combination of parameters under each sampling scenario we calculated the 
percentage of time the correct model was selected, and compared parameter estimates from the 
selected models with the values used to generate the data.  Again, we assumed the researcher is 
interested in quantifying births, deaths, and dispersal, so the dynamic model was deemed 
“incorrect” when γ = 0 and ε = 0 in simulated presence/absence datasets, or when φ = 0 and ω = 1 
in simulated count datasets.  Similarly, we compared model estimates of the dynamic rates with 
those governing changes in site use (γ and ε) or superpopulation size (φ and ω).  We calculated 
bias as the parameter estimate minus its true value, averaged over all 1000 datasets.  Variance was 
calculated among the estimates themselves, and mean squared error (MSE) as the sum of the 
variance and the squared bias.  We disregarded parameter estimates from models with non-
invertible Hessian matrices (< 2% of fitted models). 
 
Empirical Case Study 
 We used only the data collected on birds within 50 m of the 193 demographic plot point 
count stations in 2014 for this analysis.  As mentioned above, we conducted two visits to each 
station within two mornings of one another, and a third visit 15 to 19 (median 17) days after the 
first.  Counts lasted 10 minutes and were divided into 3:20 intervals.  For clarity, we will refer to 
day-specific 10-minute point counts as visits and repeated 3:20 samples within each visit as 
intervals. 
 We constructed three unique presence/absence and count datasets from the resulting point 
count data (Figure 1.3), and label them based on the process we assume is being isolated between 
primary periods.  Because our survey sites were stationary (50 m radius circles), TE could result 
from individuals moving within their territories, but outside of the sample space (Figure 1.1).  In 
addition, births, deaths, and dispersal events could be possible over the course of our 19 day 
sampling period. 
 The first dataset combined only the first and third visits to each station, but included the 
six repeated intervals (three per visit).  Intervals were treated as secondary periods nested within 
primary periods (site visits) when fitting dynamic models.  Such a protocol might be used when a 
researcher is interested in estimating changes in occupancy or abundance rather than use or 
superpopulation size (MacKenzie & Royle 2005).  Under this design, we assumed secondary 
periods were closed to both dynamics and TE, and therefore both processes only occurred between 
primary periods.  We refer to this data configuration as the confounded TE/dynamics dataset. 
 The second dataset was similar to the first, but used only the first and second visits (with 
six repeated intervals).  Again, we assumed that secondary periods were closed to both dynamics 
and TE.  However, because the two visits in this dataset were separated by no more than 48 hours, 
we assumed that the only dynamic process occurring between primary periods was TE.  We refer 
to this data configuration as the isolated TE dataset. 
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The final dataset combined all three visits and ignored the repeated intervals; this 
represented a sampling design for estimating changes in use or superpopulation sizes of unmarked 
populations (Mackenzie & Royle 2005).  Here we assumed the temporal duration (24-48 h) 
between the first two visits was short enough to be closed to population dynamics, but open to 
temporary emigration.  Treating these first two visits as a single primary sampling period ensured 
that the probability of detection was estimated as papd (Nichols et al. 2009), allowing tests of true 
population dynamics between primary periods.  We refer to this data configuration as the isolated 
dynamics dataset. 

We limited our analyses to only those species detected on > 20% of sample sites (Table 2).  
Using the same approach described above, we tested for population dynamics in each of these 57 
datasets (three per species) by comparing presence/absence (MacKenzie et al. 2002) and count 
(Royle 2004) models that assumed site closure over all samples to those that allowed distributions 
to change between primary periods (MacKenzie et al. 2003; Dail & Madsen 2011).  In each model, 
time of day and observer were included as covariates for detection probability, but for simplicity, 
distribution and dynamic parameters were modeled as constants.  We assumed the response 
variable was Poisson distributed in all count models, and no relationship between recruitment rate 
and apparent survival probability for dynamic count models.  We compared dynamic model 
parameter estimates within species and across datasets using paired t-tests to investigate how 
sampling situations influence estimates.  All analyses were conducted using the occu(), 
colext(), pcount(), and pcountOpen() functions in the unmarked package (v. 0.10-6) in 
R (v. 3.1.2). 

Using datasets analogous to those we deemed confounded TE/dynamics, several 
researchers (e.g., Betts et al. 2008; Rota et al. 2009; McClure & Hill 2012) concluded there was 

Figure 1.3 A schematic outlining the structure of the three occupancy and abundance datasets constructed from 
repeated point counts at 193 locations in southern Indiana in the summer of 2014. Circles represent 10-minute site 
visits, some of which were split into 3:20 subintervals. Circles or parts of circles shaded similarly were considered 
part of the same primary sampling period. 
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substantial evidence for within-breeding season territorial changes in bird communities.  Thus, 
analysis of our confounded TE/dynamics datasets allowed us to replicate these results.  Analysis 
of the isolated TE and isolated dynamics datasets provided the opportunity to evaluate how these 
conclusions change when the movement being modeled represented each process independently. 
 
Effects of Fragmentation on Avian Distributions and Dynamics 
 To investigate the independent effects of habitat loss and fragmentation on avian 
distribution patterns, we used the data collected from the 490 forest patch point count stations over 
3 years (2011-2013).  We eliminated all swifts, swallows, migrants, raptors, hummingbirds, and 
nocturnal or crepuscular species from consideration because our methods were not designed to 
sample these groups.  Because our estimates of “habitat” were defined as forest cover, we also 
eliminated waterbirds, and habitat generalists (i.e., those that frequently utilize non-forested areas) 
from consideration.  We then selected the 30 most widely-distributed remaining species and 
developed species-specific dynamic occupancy models using the approach developed by 
MacKenzie et al. (2003). 

We began model construction by conducting a principal components analysis on the 5 
standardized vegetation variables measured at the site-by-year level.  We took this approach 
because: 1) we were not explicitly interested in quantifying the effects of local vegetation on 
species distributions, but rather in accounting for it; and 2) it allowed us to reduce the number of 
explanatory variables in our models.  The first 3 principal components explained 77% of the 
variability in our local vegetation data (see results), and thus we were able to eliminate two 
explanatory variables while still accounting for substantial local variability. 

As mentioned above, dynamic occupancy models utilize Pollock’s (1982) robust sampling 
design to estimate distributions and changes in distributions as a function of habitat features while 
simultaneously accounting for imperfect detection.  We assumed that sites were closed to changes 
in occupancy over the 3 repeated visits within a breeding season, and allowed occupancy status of 
a site to change between years.  The model specifies that site specific occupancy for the species of 
interest at site j = 1,2,…,490 in year k = 1,2,3 (denoted Zj,k) is 1 if the species uses site j in year k, 
and 0 otherwise.  The model assumes that Zj,1 ~ Bernoulli (ψj,1) where ψj,1 is the probability of 
initial occupancy for the species at site j in year 1.  We then modeled the initial occupancy rate as 
a function of habitat features using the following logit function: 

൫߰௝,ଵ൯ݐ݅݃݋݈  = 0ߚ + 1ߚ ∗ 1௝,ଵܥܲ + 2ߚ ∗ 2௝,ଵܥܲ + 3ߚ ∗ 3௝,ଵܥܲ + 4ߚ ∗ ݁݀݃݁. ௝ݐݏ݅݀ + ∗5ߚ log൫ܿݐܽ݌ℎ. ݖ݅ݏ ௝݁൯ + 6ߚ ∗ ௝ݐ݊ݑ݋݉ܽ + 7ߚ ∗ log൫ܿݐܽ݌ℎ. ݖ݅ݏ ௝݁൯ ∗  ௝ݐ݊ݑ݋݉ܽ
 

In this model: PC1, PC2, and PC3 are the values of the first 3 local vegetation principal 
components measured at the point-by-year scale; edge.dist is the distance from the point count 
station to the nearest forest patch edge; patch.size is the size (ha) of the forest patch in which the 
point was located; and amount is the proportion of the landscape within 2 km of the point 
comprised of forest.  We were not able to include a patch-level random effect in our analyses 
because there was only 1 point in 89 (44%) of the patches, making it impossible to separate point-
level variability from patch-level variability.  For subsequent years (k = 2,3), the model assumes 
Zj,k ~ Bernoulli(ψj,k) where 
 ߰௝,௞ = ൫1 − ௝ܼ,௞ିଵ൯ ∗ ௝ߛ + ௝ܼ,௞ିଵ ∗ (1 −  (௝ߝ
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௝൯ߛ൫ݐ݅݃݋݈ = 0ߛ + 1ߛ ∗ log൫ܿݐܽ݌ℎ. ݖ݅ݏ ௝݁൯ + 2ߛ ∗ ௝ݐ݊ݑ݋݉ܽ + 3ߛ ∗ log൫ܿݐܽ݌ℎ. ݖ݅ݏ ௝݁൯ ∗ +௝ݐ݊ݑ݋݉ܽ 4ߛ ∗ ݁݀݃݁.  ௝ݐݏ݅݀
௝൯ߝ൫ݐ݅݃݋݈  = 0ߝ + 1ߝ ∗ log൫ܿݐܽ݌ℎ. ݖ݅ݏ ௝݁൯ + 2ߝ ∗ ௝ݐ݊ݑ݋݉ܽ + 3ߝ ∗ log൫ܿݐܽ݌ℎ. ݖ݅ݏ ௝݁൯ ∗ +௝ݐ݊ݑ݋݉ܽ 4ߝ ∗ ݁݀݃݁.  ௝ݐݏ݅݀
 
 Here γj represents the probability of site j becoming colonized given that it was not 
previously occupied, and εj represents the probability of site j being vacated given that it was 
previously occupied.  Thus, initial occupancy in 2011 is being modeled as a function of local and 
landscape level habitat variables, while occupancy in years 2012 and 2013 is modeled as a 
Markovian process where the occupancy state is dependent on the occupancy state in the previous 
year.  This model, in conjunction with our study design, allowed us to test the independent effects 
of patch size, habitat amount, and their interaction on distribution patterns and dynamic population 
rates simultaneously. 

In cases where the species was directly observed, Zj,k is known, but because individuals are 
often imperfectly detected, Zj,k is a latent variable when no individual was observed.  Thus, the 
model uses the repeated observations of presence and absence in each year at each site to adjust 
our estimates to account for imperfect detection.  The observations are denoted yj,k,l where l = 
1,2,3, and the observation component of the model is specified as 
)݈݈݅ݑ݋݊ݎ݁ܤ~௝,௞,௟ݕ  ௝ܼ,௞ ∗ (௜݌)ݐ݅݃݋݈ (݌ = 0௠ߙ ∗ ௝,௞,௟(௠ݎ݁ݒݎ݁ݏܾ݋)ܫ + 1ߙ ∗ ݉݅ݐ ௝݁,௞,௟ + 2ߙ ∗  ௝,௞,௟݈݊ܽ݅ݑܬ
 
 
Where α0 is an observer-specific intercept (m = 1,2,…,19), time is the number of minutes passed 
since midnight, and Julian is the Julian date of the year.  Under this formulation, an individual 
species can only be detected when present.  All dynamic occupancy models were constructed in R 
v. 3.2.2 using the colext()function in the unmarked package (Fiske & Chandler 2011), and all 
explanatory variables were scaled with mean of 0 and standard deviation of 1 before inclusion in 
the model to increase the efficiency of the estimation process. 
 
Effects of Fragmentation on Avian Distribution and Richness 

While the dynamic occupancy models described above allowed us to identify the effects 
of landscape features on dynamic processes for each species individually, there are a couple of 
downsides to this analysis approach.  First, the theoretical underpinnings of landscape conservation 
theory relate community distributions to landscape features, rather than individual species 
(MacArthur and Wilson 1963; 1967).  Secondly, it ignores life history relationships between 
species that may be useful in predicting sensitivity to fragmentation.  For instance, habitat 
specialists tend to be much more sensitive to patch size (Iida and Nakashizuka 1995, Bender et al. 
1998, Lawesson et al. 1998, Cook et al. 2002, Godefroid and Koedam 2003, Kolb and Diekmann 
2004, Puttker et al. 2013) and other fragmentation effects than habitat generalists (Carrara et al. 
2015, Blandón et al. 2016, Khimoun et al. 2016; but see Ruiz-Guttierez et al. 2010, Fahrig 2017).  
Lastly, we were unable to identify variables limiting distributions of rare or cryptic species due to 
the paucity of data, and these species are often of greatest conservation concern (Samu et al. 2008).  
Thus, we also analyzed these data using a recently developed community occupancy modeling 
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approach (Dorazio and Royle 2005, Kéry and Royle 2008, Zipkin et al. 2009, Iknayan et al. 2014) 
that allowed us to explicitly estimate factors influencing distribution and detectability of all species 
of interest simultaneously.  For this analysis, we processed the point count data by removing all 
species that do not breed in the region (i.e., transient migrants), and those species poorly sampled 
by point count methodology (i.e., raptors, waterbirds, swifts and swallows, nocturnal and 
crepuscular species, hummingbirds, and game birds).  We classified the remaining species into 
four habitat groups; forest interior specialists, forest edge specialists, forest generalists, and habitat 
generalists.  Classifications were made by a committee of expert ornithologists familiar with the 
local avifauna and by consultation with the Birds of North America species accounts (Rodewald 
2015).  We excluded habitat generalists from further analyses. 

We fit a temporally-dependent, Bayesian community occupancy model to the point count 
data for the remaining species.  Community occupancy models estimate species-specific 
occupancy and detection parameters within a hierarchical framework where those estimates are 
related through community-level hyper-parameters (Dorazio and Royle 2005, Kéry and Royle 
2008, Zipkin et al. 2009).  The full advantages of such a modeling approach are detailed elsewhere 
(Gelman and Hill 2007, Dorazio and Royle 2005, Kéry and Royle 2008, Royle and Dorazio 2008, 
Zipkin et al. 2009, Tingley and Bessinger 2013, Iknayan et al. 2014), but we chose it for three 
primary reasons.  First, we were able to explicitly model detection probabilities, thereby avoiding 
biases associated with individuals that may have been present but undetected.  Second, we were 
able to include all species of interest in the analysis (even rare species) because the community 
hyper-parameters allow borrowing of information from more common species (Royle and Dorazio 
2008, Zipkin et al. 2009, Iknayan et al. 2014, Yamura et al. 2016).  Lastly, we were interested in 
the estimates of the community hyper-parameters themselves to help summarize the differences in 
mean response between habitat groups. 
 In our model yhijklm represents the observed detection information, taking a value of 1 if 
species i in habitat group h was detected in patch j at site k during survey m of year l, and 0 
otherwise.  We assumed yhijklm ~ Bernoulli (Zhijkl * phijklm) where Zhijkl represents the true species-
specific occurrence state, and phijklm represents the species-specific probability of detection at the 
site during the sampled moment in time.  Note that while detection probability can vary within a 
single year, this model specification assumes that sites are closed to changes in occupancy within 
a breeding season (about 7 weeks in our study).  This assumption is standard in occupancy 
modeling (MacKenzie et al. 2002), and is likely reasonable for most of our breeding species.  We 
assumed that Zhijkl ~ Bernoulli (ψhijkl), and incorporated covariate effects on occupancy (ψhijkl) and 
detection (phijklm) probabilities into the model on the logit scale. 
 We expected that detection probability for most species would decline with increasing 
Julian date (Julian), and that increasing tree basal area (tree) would reduce the ability of observers 
to see and hear birds.  Thus, detection probabilities were modeled as 
 
 
 
Note that unlike above, we did not include time of day or observer identity in these models due to 
model convergence issues.  We modeled occupancy probability as a function of the local 
vegetation principal components (PC1-3), edge distance (edge.dist), log-transformed patch size 
(patch.size), amount of forest within 2 km (amount), and an interaction between log-patch.size and 
amount.  In order to account for autocorrelation between points within the same patch, we included 
a unique random patch effect (patch) for each habitat group in each year.  Ideally, we would have 
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included species-specific random patch effects in the model, but this simply was not possible due 
to the fact that 44% of patches contained only 1 point, and our modeling approach was unable to 
parse variability between site level and patch level intercept terms.  Thus, in the first year (l = 1), 
we modeled occupancy probability as 
In subsequent years, we assumed that the covariate effects remained constant, but that occupancy 

probability was dependent on occupancy in the previous year.  Thus, for l > 1, 
 
where γ1hi is a species-specific autologistic parameter (Royle and Dorazio 2008).  On a more 
intuitive level, γ1hi represents the change in the occupancy intercept if the site was occupied the 
previous year.  Note that in this analysis we are no longer explicitly modeling changes in 
occupancy between years as a function of covariates.  The advantage of this approach is that we 
increase our power to detect covariate effects on occupancy itself, We standardized all covariates 
with a mean of zero and standard deviation of one before inclusion to assist with model 
convergence. 
 We expected that species in the same habitat group would respond to occupancy covariates 
similarly.  However, we did not expect that the effects of detection covariates or patch effects 
would vary in any systematic way between habitat groups.  Thus we specified parameter-specific 
hyperdistributions for the effects of each covariate in the following way: 
 

Initial data exploration indicated low evidence for a significant patch.size-by-amount 
interaction for most species, and thus we also fit a second model as described above that excluded 
this interaction term.  We fit both models in JAGS (Plummer 2003) using the jagsUI v 1.4.2 
package (Kellner 2016) within the R v 3.1.2 programming language.  JAGS is a Bayesian analysis 
program used for fitting hierarchical models via Markov Chain Monte Carlo (MCMC) simulation.  
We specified vague priors for all community hyper-parameters; μ values were distributed normally 
with a mean of 0 and variance of 1000 while σ2 values had a uniform (0, 5) distribution.  For each 
model we ran three MCMC chains for 400,000 iterations with a burn-in of 200,000 and thinned 
by 100.  This left us with 6,000 estimates from the posterior distribution across all chains.  We 
assessed model convergence by visually inspecting traceplots, and ensuring the Gelman-Rubin 
statistic for all monitored parameters was less than 1.1 (Gelman et al. 2004).  We assessed model 
fit using a Bayesian p-value approach (Gelman et al. 2004, Kéry and Royle 2016). 
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Because all species are detected imperfectly, point-level species richness could not be directly 
observed.  As a result, our model does not explicitly examine the relationship between richness 
and covariates.  Instead, we inferred these relationships by examining predicted species richness 
as an emergent value from the model.  For each of the 6,000 posterior draws, we first calculated 
predicted probability of occupancy for each species by varying the values of patch.size or amount, 
and holding all other covariates constant at their means.  We then calculated predicted richness for 
the entire community and for each habitat group separately by summing these values at each 
iteration, resulting in 6,000 estimates of predicted richness for each patch.size or amount value. 
 
Species Distribution Models for Common Breeding Species 
 Species distribution models (SDMs) can provide detailed predictions about animal 
locations, and thus are invaluable to conservation and management efforts (Elith et al. 2006).  In 
recent decades, the availability of remote sensing data has flourished, offering opportunities to 
develop SDMs over broad geographical ranges (Shirley et al. 2013).  For instance, the USGS 
launched their Landsat 5 satellite in the mid 1980s which takes aerial images of all locations on 
the earth every 16 days (Kerr & Ostrovsky 2003).  With a resolution of 30 m, the resulting data 
offer opportunities to develop distributional maps over fine temporal and spatial scales. 
 We used a recently developed approach (Shirley et al. 2013) to model distribution patterns 
observed from our point count data as a function of Landsat 5 TM imagery information.  This 
allowed us to create SDMs for common breeding bird species across southern Indiana.  We began 
by examining all images taken of our study region in 2011-2013 and eliminated those obscured by 
clouds or darkness.  We then inspected the remaining images, and selected a single image from 29 
June 2011 to construct explanatory variables (Figure 1.3).  Cloud cover in this image was less than 
1 %, and the quality rating for each of the 7 TM bands was excellent.  No additional image 
processing was required given that the single image encompassed our entire study area. 
 We began by constructing boosted regression tree models (BRTs; Friedman et al. 2000; 
Friedman 2001) for the 30 most widely distributed species (Table 2).  BRTs differ from traditional 
regression models in that they start with a simple classification tree and use a boosting algorithm 
to iteratively fit new trees in a stage-wise fashion, where new trees place emphasis on observations 
thus far poorly predicted (Elith et al. 2008; Shirley et al. 2013).  A BRT approach to SD modeling 
is advantageous because BRTs can construct complex nonlinear relationships and interactions 
between explanatory variables (Shirley et al. 2013).  Further, collinearity among explanatory 
variables does not pose a problem to BRTs, which do not rely on inversion of matrices like linear 
models do (Breiman et al. 1984).  While the output from BRT analyses is often more challenging 
to interpret, predictive performance is typically improved. 

Explanatory variables in our models were the mean and standard deviation of: the Landsat 
reflectance bands 1, 2, 3, 4, 5, and 7; elevation, as derived from the USGS National Elevation 
Dataset (http://datagateway.nrcs.usda.gov); and stream distance, derived from the USGS National 
Hydrography Dataset (http://datagateway.nrcs.usda.gov).  These values were calculated at 4 
spatial scales (150 m, 500 m, 1000 m, and 2000 m) that are known to be relevant to passerines 
(Betts et al. 2006).  Accounting for imperfect detection is currently not possible in a BRT modeling 
framework, so we also included observer, time of day, and Julian date as explanatory variables for 
occupancy, resulting in 67 total predictor variables. 
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We utilized all point count data collected within 100 m of the 654 point count stations 
sampled in 2011-2013.  Each visit (9 total) to each site was used as a unique observation in order 
to allow inclusion of sample-level covariates (time, observer, and date).  Thus, the response 
variable is effectively the proportion of the visits to a site in which the species was encountered.    
We randomly split the dataset in half, and information from 327 sites was used for constructing 
BRTs, while the data from the other sites was used for model validation.  Following Elith et al. 
(2008), we chose a bag fraction (which controls model stochasticity) of 0.5, which typically yield’s 
good results for presence-absence data.  The learning rate, which controls the rate at which new 
trees are added to the model, was set at 0.0025 for all species except for Hairy Woodpecker, for 

which learning rate was set to 0.00125.  These 
learning rates resulted in models that achieved the 
recommended minimum of 1000 trees for each 
species (Elith et al. 2008).  Tree complexity was 
set to 5, and we used a 10 fold cross-validation 
procedure in the fitting function (Hastie et al. 
2001).  All models were fit using the gbm 
(Ridgeway 2015) and dismo (Hijmans et al. 
2016) packages in R v. 3.2.2. 

Fitted models were evaluated with the 
held out test dataset using the area under the 
receiver operating characteristic curve (AUC).  
Hosmer & Lemeshow (2000) suggest that models 
with an AUC of less than 0.7 do not have 
acceptable discriminatory power, and thus we 
only constructed SDMs for those species with a 
model AUC greater than this value.  SDMs were 
constructed by predicting occupancy at the 30 m 
pixel level based on the final BRT models to all 
forested areas covered by the original selected 
Landsat 5 image (Figure 1.4).  We used a constant 
observer, time, and date for predictions, so the 

resulting pixel values can be interpreted as the probability that an average observer would observe 
the species at 6:30 am on June 1.

 

Results and Discussion 

Point Counts and Vegetation Sampling 
Over the course of 4 years, we conducted 6,639 bird surveys and recorded 109,448 

detections of 109 unique species (Table 1.2).  Counts of individual species ranged from 0 to as 
high as 3197 in each year, while naïve occupancy estimates were as high as 0.99 for some species.  
The majority of these species (n = 56) were incidental detections of non-targeted species (e.g., 
waterbirds, raptors, swifts, swallows, etc.), and were excluded from all analyses.  Table 1.2 
identifies the particular species that were included in each analysis. 

Figure 1.4 TM band 1 data from the aerial Landsat 5 
image taken on 29 June 2011.  The extent indicates the 
region of coverage for constructed SDMs. 
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 We additionally conducted 1,376 vegetation surveys.  Each of the 683 sites were sampled 
twice, and 10 additional points were sampled a third time due to local disturbances.  Local 
vegetation was highly variable among sites (Table 1.3), allowing us to classify species distributions 
over a broad range of characteristics.  Results from the principal components analysis are presented 
in Table 1.4.  As mentioned above, we were not explicitly interested in the effects of local 
vegetation on species distributions, but rather in accounting for the local variability in our analysis 
landscape features.  This was primarily a tool for reducing the number of explanatory variables in 
our model, and thus the results are not discussed further. 
 
Table 1.2 Raw counts and naïve occupancy estimates for all species encountered within 100 m of 
point count stations during the breeding seasons of 2011-2014.  Note that while there were a total 
of 683 stations, only 654 were sampled in 2011, and 193 in 2014.  The latter 3 columns identify 
which species were utilized in the 3 analyses described in the methods.  Species are listed in 
taxonomic order. 
 

Species Scientific Name Raw Counts   Naïve Occupancy   Analyses 
    2011 2012 2013 2014   2011 2012 2013 2014   TE Dyn Occ SDM 
               
Canada Goose Branta canadensis 12 26 2 0  0.008 0.013 0.003 0.000  -- -- -- 
Wood Duck Aix sponsa 1 2 0 10  0.002 0.003 0.000 0.016  -- -- -- 
Mallard Anas platyrhynchos 2 0 0 0  0.003 0.000 0.000 0.000  -- -- -- 
Northern Bobwhite Colinus virginianus 23 40 20 14  0.029 0.044 0.022 0.052  -- -- -- 
Ruffed Grouse Bonasa umbellus 0 1 0 0  0.000 0.001 0.000 0.000  -- -- -- 
Wild Turkey Meleagris gallopavo 32 39 19 12  0.043 0.020 0.019 0.021  -- -- -- 
Great Blue Heron Ardea herodias 12 26 12 0  0.017 0.019 0.016 0.000  -- -- -- 
Unknown Ardeid -- 0 12 3 0  0.000 0.004 0.003 0.000  -- -- -- 
Unknown Waterbird -- 1 6 7 0  0.002 0.007 0.010 0.000  -- -- -- 
Black Vulture Coragyps atratus 0 0 1 0  0.000 0.000 0.001 0.000  -- -- -- 
Turkey Vulture Cathartes aura 9 0 23 0  0.008 0.000 0.003 0.000  -- -- -- 
Sharp-shinned Hawk Accipiter striatus 0 1 0 0  0.000 0.001 0.000 0.000  -- -- -- 
Cooper's Hawk Accipiter cooperii 1 1 1 0  0.002 0.001 0.001 0.000  -- -- -- 
Red-shouldered Hawk Buteo lineatus 19 39 13 18  0.026 0.051 0.019 0.073  -- -- -- 
Broad-winged Hawk Buteo platypterus 3 2 1 2  0.005 0.001 0.001 0.010  -- -- -- 
Red-tailed Hawk Buteo jamaicensis 8 10 7 3  0.009 0.010 0.010 0.016  -- -- -- 
Unknown Raptor -- 6 2 4 0  0.009 0.003 0.006 0.000  -- -- -- 
American Coot Fulica americana 1 0 0 0  0.002 0.000 0.000 0.000  -- -- -- 
Killdeer Charadrius vociferus 1 5 6 0  0.002 0.007 0.007 0.000  -- -- -- 
American Woodcock Scolopax minor 3 6 3 3  0.005 0.006 0.004 0.010  -- -- -- 
Mourning Dove Zenaida macroura 269 192 253 39  0.278 0.195 0.256 0.161  -- -- -- 
Yellow-billed Cuckoo Coccyzus americanus 457 192 63 142  0.459 0.205 0.078 0.513  -- -- -- 
Black-billed Cuckoo Coccyzus erythropthalmus 3 1 1 0  0.005 0.001 0.001 0.000  -- -- -- 
Unknown Cuckoo -- 0 0 2 0  0.000 0.000 0.003 0.000  -- -- -- 
Eastern Screech-Owl Megascops asio 0 1 4 0  0.000 0.001 0.006 0.000  -- -- -- 
Great Horned Owl Bubo virginianus 1 3 0 1  0.002 0.004 0.000 0.005  -- -- -- 
Barred Owl Strix varia 7 4 8 1  0.008 0.006 0.009 0.005  -- -- -- 
Common Nighthawk Chordeiles minor 0 0 1 0  0.000 0.000 0.001 0.000  -- -- -- 
Chuck-will's-widow Caprimulgus carolinensis 0 0 0 1  0.000 0.000 0.000 0.005  -- -- -- 
Eastern Whip-poor-will Caprimulgus vociferus 6 8 1 0  0.006 0.009 0.001 0.000  -- -- -- 
Chimney Swift Chaetura pelagica 1 1 23 3  0.002 0.001 0.023 0.010  -- -- -- 
Ruby-throated Hummingbird Archilochus colubris 22 36 49 19  0.034 0.050 0.067 0.093  -- -- -- 
Belted Kingfisher Megaceryle alcyon 3 4 16 1  0.005 0.006 0.022 0.005  -- -- -- 
Red-headed Woodpecker Melanerpes erythrocephalus 43 34 25 3  0.050 0.035 0.031 0.016  -- -- -- 
Red-bellied Woodpecker Melanerpes carolinus 805 1344 685 347  0.633 0.761 0.587 0.731  YES YES YES 
Downy Woodpecker Picoides pubescens 524 660 485 354  0.506 0.608 0.493 0.793  YES YES YES 
Hairy Woodpecker Picoides villosus 37 241 204 91  0.050 0.283 0.246 0.301  -- YES YES 
Northern Flicker Colaptes auratus 183 242 252 118  0.231 0.253 0.297 0.409  -- YES YES 
Pileated Woodpecker Dryocopus pileatus 221 222 160 80  0.255 0.256 0.189 0.306  -- -- -- 
Unknown Woodpecker -- 343 453 258 118  0.390 0.473 0.313 0.466  -- -- -- 
Eastern Wood-Pewee Contopus virens 1409 1428 1543 450  0.809 0.799 0.814 0.839  YES YES YES 
Acadian Flycatcher Empidonax virescens 2860 3197 3113 1590  0.873 0.906 0.902 0.995  YES YES YES 
Least Flycatcher Empidonax minimus 7 0 0 0  0.011 0.000 0.000 0.000  -- -- -- 
Eastern Phoebe Sayornis phoebe 32 28 34 18  0.041 0.034 0.038 0.073  -- -- -- 
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Great Crested Flycatcher Myiarchus crinitus 213 304 269 88  0.242 0.305 0.280 0.285  -- YES YES 
Eastern Kingbird Tyrannus tyrannus 2 4 10 3  0.002 0.006 0.013 0.010  -- -- -- 
Unknown Flycatcher -- 5 3 3 0  0.006 0.003 0.003 0.000  -- -- -- 
White-eyed Vireo Vireo griseus 343 340 422 147  0.280 0.262 0.290 0.264  -- YES YES 
Yellow-throated Vireo Vireo flavifrons 243 364 316 149  0.271 0.375 0.348 0.409  YES YES YES 
Warbling Vireo Vireo gilvus 18 12 19 0  0.021 0.009 0.018 0.000  -- -- -- 
Red-eyed Vireo Vireo olivaceus 2585 2848 2978 1283  0.939 0.946 0.950 0.995  YES YES YES 
Unknown Vireo -- 0 4 1 1  0.000 0.004 0.001 0.005  -- -- -- 
Blue Jay Cyanocitta cristata 443 448 381 134  0.413 0.372 0.351 0.383  -- YES YES 
American Crow Corvus brachyrhynchos 389 459 241 49  0.355 0.343 0.206 0.145  -- -- -- 
Purple Martin Progne subis 0 0 2 0  0.000 0.000 0.001 0.000  -- -- -- 
Tree Swallow Tachycineta bicolor 6 0 13 0  0.006 0.000 0.018 0.000  -- -- -- 
Northern Rough-winged Swallow Stelgidopteryx serripennis 0 3 1 0  0.000 0.001 0.001 0.000  -- -- -- 
Barn Swallow Hirundo rustica 0 1 1 0  0.000 0.001 0.001 0.000  -- -- -- 
Unknown Swallow -- 0 11 14 0  0.000 0.013 0.013 0.000  -- -- -- 
Carolina Chickadee Poecile carolinensis 871 599 872 299  0.607 0.471 0.668 0.653  YES YES YES 
Tufted Titmouse Baeolophus bicolor 1673 1470 1553 537  0.872 0.833 0.852 0.907  YES YES YES 
Unknown Paridae -- 66 222 146 40  0.078 0.240 0.167 0.114  -- -- -- 
White-breasted Nuthatch Sitta carolinensis 649 1016 673 533  0.567 0.735 0.605 0.907  YES YES YES 
Carolina Wren Thryothorus ludovicianus 622 840 1063 127  0.502 0.615 0.698 0.321  -- YES YES 
House Wren Troglodytes aedon 3 6 9 0  0.005 0.009 0.012 0.000  -- -- -- 
Unknown Wren -- 0 0 1 0  0.000 0.000 0.001 0.000  -- -- -- 
Blue-gray Gnatcatcher Polioptila caerulea 1109 719 1245 600  0.769 0.517 0.795 0.933  YES YES YES 
Eastern Bluebird Sialia sialis 11 26 50 5  0.015 0.037 0.067 0.026  -- -- -- 
Veery Catharus fuscescens 0 1 1 0  0.000 0.001 0.001 0.000  -- -- -- 
Swainson's Thrush Catharus ustulatus 0 0 2 0  0.000 0.000 0.003 0.000  -- -- -- 
Wood Thrush Hylocichla mustelina 1642 1652 1362 943  0.734 0.710 0.676 0.896  YES YES YES 
American Robin Turdus migratorius 252 337 252 34  0.209 0.239 0.218 0.093  -- -- -- 
Unknown Thrush -- 0 0 1 0  0.000 0.000 0.001 0.000  -- -- -- 
Gray Catbird Dumetella carolinensis 200 169 151 63  0.208 0.132 0.136 0.171  -- YES YES 
Northern Mockingbird Mimus polyglottos 11 1 1 0  0.017 0.001 0.001 0.000  -- -- -- 
Brown Thrasher Toxostoma rufum 37 33 29 2  0.047 0.041 0.041 0.005  -- -- -- 
Unknown Mimic -- 3 1 5 0  0.005 0.001 0.007 0.000  -- -- -- 
European Starling Sturnus vulgaris 4 0 1 0  0.003 0.000 0.001 0.000  -- -- -- 
Cedar Waxwing Bombycilla cedrorum 5 95 11 9  0.008 0.063 0.010 0.016  -- -- -- 
Ovenbird Seiurus aurocapilla 591 650 625 440  0.369 0.404 0.378 0.694  YES YES YES 
Worm-eating Warbler Helmitheros vermivorum 114 64 107 101  0.125 0.066 0.111 0.238  -- -- -- 
Louisiana Waterthrush Parkesia motacilla 73 88 199 92  0.089 0.110 0.206 0.285  -- -- -- 
Unknown Waterthrush -- 1 0 0 0  0.002 0.000 0.000 0.000  -- -- -- 
Blue-winged Warbler Vermivora cyanoptera 43 21 37 13  0.054 0.023 0.048 0.052  -- -- -- 
Black-and-white Warbler Mniotilta varia 21 21 20 25  0.023 0.022 0.026 0.083  -- -- -- 
Prothonotary Warbler Protonotaria citrea 94 58 70 23  0.066 0.051 0.057 0.031  -- -- -- 
Tennessee Warbler Oreothlypis peregrina 1 0 0 0  0.002 0.000 0.000 0.000  -- -- -- 
Nashville Warbler Oreothlypis ruficapilla 1 0 0 0  0.002 0.000 0.000 0.000  -- -- -- 
Kentucky Warbler Geothlypis formosa 1036 1131 982 446  0.706 0.726 0.690 0.782  YES YES YES 
Common Yellowthroat Geothlypis trichas 352 434 354 53  0.303 0.315 0.283 0.135  -- YES YES 
Hooded Warbler Setophaga citrina 408 377 418 258  0.301 0.256 0.271 0.440  YES YES YES 
American Redstart Setophaga ruticilla 12 37 33 30  0.017 0.038 0.040 0.047  -- -- -- 
Cerulean Warbler Setophaga cerulea 84 88 116 89  0.098 0.083 0.117 0.228  -- -- -- 
Northern Parula Setophaga americana 583 529 625 194  0.468 0.430 0.498 0.440  -- YES YES 
Blackburnian Warbler Setophaga fusca 1 0 0 0  0.002 0.000 0.000 0.000  -- -- -- 
Yellow Warbler Setophaga petechia 4 4 1 0  0.006 0.004 0.001 0.000  -- -- -- 
Blackpoll Warbler Setophaga striata 0 0 1 0  0.000 0.000 0.001 0.000  -- -- -- 
Pine Warbler Setophaga pinus 9 2 7 3  0.011 0.003 0.009 0.016  -- -- -- 
Yellow-rumped Warbler Setophaga coronata 1 0 0 0  0.002 0.000 0.000 0.000  -- -- -- 
Yellow-throated Warbler Setophaga dominica 226 191 196 43  0.243 0.180 0.204 0.124  -- YES YES 
Prairie Warbler Setophaga discolor 54 72 71 18  0.063 0.081 0.083 0.052  -- -- -- 
Black-throated Green Warbler Setophaga virens 2 3 0 0  0.003 0.003 0.000 0.000  -- -- -- 
Yellow-breasted Chat Icteria virens 366 340 274 90  0.295 0.259 0.227 0.212  -- YES YES 
Unknown Warbler -- 8 30 63 9  0.012 0.040 0.078 0.041  -- -- -- 
Unknown Tanager -- 147 206 84 8  0.176 0.245 0.116 0.041  -- -- -- 
Eastern Towhee Pipilo erythrophthalmus 1442 1476 1569 384  0.746 0.712 0.750 0.653  YES YES YES 
Chipping Sparrow Spizella passerina 54 12 43 4  0.072 0.018 0.048 0.021  -- -- -- 
Field Sparrow Spizella pusilla 131 82 149 16  0.142 0.089 0.142 0.041  -- -- -- 
Song Sparrow Melospiza melodia 59 69 108 3  0.067 0.064 0.107 0.010  -- -- -- 
Summer Tanager Piranga rubra 257 216 212 66  0.295 0.237 0.236 0.233  -- YES YES 
Scarlet Tanager Piranga olivacea 673 700 768 455  0.592 0.593 0.592 0.839  YES YES YES 
Northern Cardinal Cardinalis cardinalis 2013 1995 1942 391  0.873 0.827 0.848 0.715  YES YES YES 
Rose-breasted Grosbeak Pheucticus ludovicianus 7 13 17 20  0.011 0.013 0.016 0.047  -- -- -- 
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Blue Grosbeak Passerina caerulea 0 0 1 0  0.000 0.000 0.001 0.000  -- -- -- 
Indigo Bunting Passerina cyanea 1410 1546 1277 221  0.742 0.725 0.695 0.492  YES YES YES 
Red-winged Blackbird Agelaius phoeniceus 42 35 33 1  0.031 0.029 0.029 0.005  -- -- -- 
Eastern Meadowlark Sturnella magna 3 2 2 0  0.003 0.003 0.001 0.000  -- -- -- 
Common Grackle Quiscalus quiscula 47 37 17 0  0.031 0.022 0.012 0.000  -- -- -- 
Brown-headed Cowbird Molothrus ater 1216 1220 1041 686  0.783 0.772 0.738 0.943  YES -- -- 
Orchard Oriole Icterus spurius 2 4 4 0  0.003 0.004 0.006 0.000  -- -- -- 
Baltimore Oriole Icterus galbula 47 24 25 4  0.060 0.035 0.032 0.021  -- -- -- 
Unknown Icterid -- 14 25 12 0  0.009 0.018 0.018 0.000  -- -- -- 
House Finch Carpodacus mexicanus 1 0 0 0  0.002 0.000 0.000 0.000  -- -- -- 
American Goldfinch Spinus tristis 88 147 136 48  0.115 0.160 0.152 0.140  -- -- -- 
House Sparrow Passer domesticus 1 0 0 0  0.002 0.000 0.000 0.000  -- -- -- 
Unknown Passerine -- 0 21 177 0  0.000 0.028 0.187 0.000  -- -- -- 
Unknown Bird -- 538 1361 423 213  0.459 0.820 0.438 0.544  -- -- -- 
                              

 
Table 1.3 Summary of vegetation local and landscape level habitat features at 683 point count 
stations. 
 

Measured habitat features Minimum Maximum Median Mean 
      
Edge distance (m) 20.32 659.40 76.08 127.50 
% habitat amount 11.22 99.81 63.51 64.28 
Patch size (ha) 0.89 22800.00 12.02 405.10 
Tree basal area (m2/ha) 2.00 52.00 26.00 25.97 
% canopy cover 5.00 100.00 90.00 87.39 
% shrub cover 0.00 92.50 22.50 26.10 
Leaf litter depth (cm) 0.00 7.44 1.88 1.96 
Vertical foliage density 0.00 0.27 0.09 0.09 
 (proportion contacted)     

            
 
Table 1.4. Results of the principal components analysis for local vegetation metrics.  
Condensing the data from local vegetation surveys into principal components allowed us to 
reduce the number of explanatory variables included in our models while still accounting for a 
large amount of local variability. 

 Variable PC1 PC2 PC3 PC4 PC5 
       
Loadings       
 Tree basal area -0.39 -0.45 0.44 -0.65 0.16 
 % shrub cover 0.57 -0.39 0.08 -0.19 -0.69 
 % canopy cover -0.43 -0.45 0.28 0.69 -0.26 
 Vertical foliage density 0.55 -0.44 0.15 0.24 0.66 
 Leaf litter depth -0.19 -0.50 -0.84 -0.08 0.05 
       
Summary       
 Standard deviation 1.34 1.08 0.95 0.85 0.65 
 Proportion of variance 0.36 0.23 0.18 0.14 0.08 
 Cumulative variance 0.36 0.59 0.77 0.92 1.00 
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Effects of Temporary Emigration on Estimates of Population Dynamics 
Simulated Data- In the use and super-population sampling scenarios, site closure tests performed 
very well.  In cases where population dynamics did not occur, the static occupancy and abundance 
models were appropriately selected ≥ 95.1% and ≥ 91.9% of the time, respectively, and when 
population dynamics were present, the dynamic occupancy or abundance model was selected ≥ 
97.2% of the time (Tables 1.5 and 1.6).  As expected, in all cases, the estimates of initial 
distributions approximated ψ0 or λ0, while detection estimates approximated papd.  Accordingly, 
dynamic parameter estimates were highly accurate and precise estimates of the dynamic 
population rates. 
 When secondary sampling periods were closed to TE (occupancy and abundance 
scenarios), site closure tests and dynamic parameter estimates resulted in misleading conclusions 
about population dynamics.  Where population dynamics were absent, the closed models were 
appropriately selected ≤ 1.3% of the time, and when population dynamics were present, the 
dynamic model was selected 100% of the time (Tables 1.7 and 1.8).  As expected, initial 
distributions estimated from these models tended to approximate ߰ or ߣ while the detection 
estimate approximated pd.  However, the dynamic occupancy models tended to underestimate 
colonization rates and overestimate extinction rates while dynamic abundance models tended to 
overestimate recruitment rate and underestimate apparent survival. 
 
Empirical Case Study- The results from the analysis of our confounded TE/dynamics and isolated 
TE datasets were very similar.  We found evidence for population dynamics in occupancy and 
abundance for all 19 species using both datasets (P < 0.02; Table 1.9).  That is, the dynamic 
population models had greater support for all species even when the interval between primary 
sampling periods was limited to 24-48 hours.  Estimates of extinction from dynamic occupancy 
models fit to the confounded TE/dynamics datasets were significantly greater than the estimates 
from models fit to the isolated TE datasets (Fig. 1.4).  However, there was no evidence that 
estimates of detection, initial occupancy, or colonization differed between these models.  
Similarly, there was no evidence that estimates of detection, initial abundance, recruitment, or 
apparent survival differed between dynamic abundance models fit to the confounded TE/dynamics 
and isolated TE datasets (Fig. 1.4).  Therefore, in most cases, the parameter estimates generated 
by dynamic models were statistically indistinguishable when primary periods were separated by 
two days versus 17 days.  This suggests that the dynamic parameter estimates were heavily 
influenced by TE when secondary samples occur within 10 minutes of one another. 
 In contrast, we only found evidence for violations of the closure assumption for nine 
species using the isolated dynamics presence/absence datasets, and eight species using the isolated 
dynamics count datasets (Table 9).  That is, for most species there was no evidence for population 
dynamics over the ~17 day period when TE was estimated as a component of detection.  In 
presence/absence models, we found strong evidence that estimates of detection and extinction were 
greater, while initial occupancy was lower in models fit to the confounded TE/dynamics datasets 
than when fit to the isolated dynamics datasets (Fig. 5).  There was also evidence that detection 
was greater and initial abundance and apparent survival were lower in models fit to confounded 
TE/dynamics count datasets.  These results indicate that models fit to the isolated dynamics 
datasets are quantifying changes in use or super-population size while models fit to the other 
datasets are likely measuring changes in instantaneous occupancy or abundance. 

Concern about overestimating species distributions due to violations of the closure 
assumption associated with repeated sampling has led to widespread recommendations that 
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samples be conducted extremely close together in time (MacKenzie & Royle 2005; MacKenzie 
2005; Rota et al. 2009; Kendall et al. 2013).  This allows for instantaneous estimates of density or 
occupancy, providing valuable information to managers regarding the number of individuals or 
territories in a study area.  However, our simulation results demonstrate that model extensions 
which allow for quantifying changes in distributions (e.g., MacKenzie et al. 2003; Dail & Madsen 
2011) confound estimates of TE with population dynamics under such study designs.  This does 
not invalidate estimates of dynamic rates between instantaneous distributions.  However, our 
findings show that these dynamics are the result of two distinctly different processes (TE and 
population dynamics), and naiveté to this fact could mislead biological interpretations of dynamic 
rates (i.e., that sites have truly experienced local extinctions rather than become temporarily 
unoccupied). 

Results from our empirical data analysis provide an example of the degree to which this 
problem could emerge in observational studies.  Conducting secondary samples within minutes of 
one another has become a popular avian sampling technique in recent years (e.g., Betts et al. 2008; 
Rota et al. 2009; McClure & Hill 2012; Otto & Roloff 2012).  By varying the temporal duration 
between primary and secondary periods with empirical data, we demonstrated that estimates of 
population dynamics under this protocol are likely heavily influenced by TE.  Nevertheless, 
numerous studies using this approach have concluded that the dynamic rates modeled between 
repeated site visits are indicative of within-season dispersal for breeding birds (e.g., Betts et al. 
2008; Rota et al. 2009; McClure & Hill 2012; Otto & Roloff 2012).  Indeed, Rota et al. (2009) 
provided a thorough consideration of the influence that TE might have on their results, yet 
concluded that TE was more than likely not the process being modeled between their 10 minute 
primary sampling periods.   However, using the same sampling protocol, we definitively 
demonstrated that TE heavily influences estimates of population dynamics, and indeed may be the 
only process being modeled between primary periods for some species. 
 Identifying source and sink habitats, or colonization and extinction events on military lands 
relies on an implicit assumption that the dynamic processes being estimated are indicative of 
permanent distributional shifts rather than temporary changes in sampling availability.  Further, 
when estimating population trends, confounding between TE and true dynamics can reduce 
precision of abundance estimates such that longer time periods would be required to detect those 
trends (Schmidt et al. 2013).  In each of these cases, TE is a nuisance parameter more appropriately 
estimated separately from, or as a component of, detection probability.  At present, we are unaware 
of any modeling approaches that simultaneously estimate pa, pd, and population dynamics 
uniquely.  Indeed, this would require a third level of information (e.g., tertiary sampling periods).  
However, as we and others (e.g., Kendall 1999; Schmidt et al. 2013) have demonstrated, it is 
unnecessary to collect such additional information when TE is not of direct interest, because 
dynamic parameters can be isolated with an appropriate sampling design. 

While numerous other methods have been developed to quantify dynamic rates from 
surveys of unmarked animals, only Pollock’s (1982) robust sampling design provides the 
flexibility for separating temporary and permanent changes in distribution.  For instance, the Dail 
& Madsen (2011, 2013) dynamic distribution models do not require secondary sampling periods, 
and indeed the authors explicitly define “open” populations as those experiencing changes in site 
super-population size.  However, without repeated visits, detection probability cannot be estimated 
as papd (Nichols et al. 2009).  Therefore, unless pa is equal to one, dynamic rates estimated between 
single survey visits will always represent changes in instantaneous abundance.  Similarly, 
Sollmann et al. (2015) developed a model for estimating dynamics between single-visit surveys 
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while quantifying detection probability from distance data.  Again, because distance-based 
sampling methods estimate site abundances as λ0pa, one cannot distinguish between permanent 
distributional shifts and temporary changes in availability. 
 Modeling population dynamics in the presence of TE therefore requires both repeated 
samples and nuanced consideration of the spatial and temporal scales over which availability and 
distributions change.  When population dynamics are of interest, researchers and managers should 
purposefully design studies to estimate use or super-population size within primary periods, rather 
than instantaneous occupancy or abundance.  This requires estimating detection probability as 
papd, and therefore that the probability of one or more individuals being available for sampling is 
random and independent during each secondary period (MacKenzie 2005; Nichols et al. 2009).  In 
cases where there is a spatial mismatch between the size of sample sites and the space used by 
targeted individuals (e.g., Fig. 1.1), this means allowing ample time for spatial redistribution of 
individuals such that their locations during two sampling events are uncorrelated (Fig. 5).  Spatial 
autocorrelation in locations should decrease with time, but the length of time required to achieve 
statistical independence will be longer for slower moving species (Swihart & Slade 1985).  When 
the sampling technique itself is destructive or induces a “trap response” (e.g., Otto et al. 2013), the 
duration between repeated samples may need to be further extended in order to ensure that the 
availability of individuals on one sampling occasion is not negatively influenced by a previous 
sampling event.  Indeed, in all situations, increasing the amount of time between samples should 
reduce correlation in availability (e.g., the likelihood that an animal is vocalizing, or has retreated 
below ground or water), yet critically, the total time interval within a primary sampling period 
must be sufficiently short that changes in use or super-population sizes are negligible.  Otherwise, 
this process will also be estimated as a component of detection probability (Kendall 1999; Rota et 
al. 2009). 
 These recommendations rely on a study system in which TE occurs over a finer time scale 
than population dynamics, and that the two are sufficiently distinguishable (Fig. 1.6).   Designing 
an appropriate sampling scheme thus requires substantial knowledge about the study system.  In 
our empirical study of territorial breeding birds, we assumed that 24-48 hour periods were long 
enough to ensure independence among individual bird locations within territories, yet short enough 
that dynamic rates were negligible.  Although we did not evaluate this assumption in the field, a 
two-day period should allow ample movement for highly vagile species like birds, while 
substantial changes in site use are unlikely.  In other sampling scenarios, however, these processes 
may not be uniquely identifiable, even with a robust sampling design.  For instance, Kendall et al. 
(1997) noted that non-nesting birds could be considered temporary emigrants when sampling 
techniques focus on nesting individuals (e.g., Spendelow & Nichols 1989).  However, the temporal 
scale of mating and nest-building may not be distinguishable from that of changes in population 
size or distributions.  Similarly, for species with poorly defined territories or home ranges, TE and 
dynamics may not be biologically distinct processes.  Future work should focus on identifying 
appropriate temporal sampling scales for different combinations of species and sampling 
techniques in order to separate rates of dynamics and TE. 
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Table 1.5 Results from occupancy models fit to simulated datasets designed to mimic a sampling 
scheme that tests for and quantifies changes in site use, rather than instantaneous occupancy.  We 
generated 1000 datasets for each combination of simulation parameters.  Whether or not any 
individual using the site was available to be detected was independent during each sampling 
period, and thus the detection estimates tend to approximate papd while the distribution 
parameters approximate the rate of site use (ψ0).    When no changes in site use occurred (no 
dynamics), static models were chosen the majority of the time.  When population dynamics were 
present, open models were selected most frequently, generating accurate and precise estimates of 
changes in site use. 
 
 Simulation parameters % open Dist (ψ0)      Det (papd) Colonization (γ)                   Extinction (ε)                      
 ψ0 pa pd γ ε selected Mean Var Mean Var Mean Var Bias MSE Mean Var Bias MSE 
 
No dynamics               
 0.3 0.5 0.5 0.00 0 3.9 0.30 0.00 0.25 0.00 --- --- --- --- --- --- --- --- 
 0.3 0.5 0.8 0.00 0 4.1 0.30 0.00 0.40 0.00 --- --- --- --- --- --- --- --- 
 0.3 0.8 0.5 0.00 0 4.9 0.30 0.00 0.40 0.00 --- --- --- --- --- --- --- --- 
 0.3 0.8 0.8 0.00 0 3.3 0.30 0.00 0.64 0.00 --- --- --- --- --- --- --- --- 
 0.7 0.5 0.5 0.00 0 3.8 0.70 0.00 0.25 0.00 --- --- --- --- --- --- --- --- 
 0.7 0.5 0.8 0.00 0 4.2 0.70 0.00 0.40 0.00 --- --- --- --- --- --- --- --- 
 0.7 0.8 0.5 0.00 0 4.7 0.70 0.00 0.40 0.00 --- --- --- --- --- --- --- --- 
 0.7 0.8 0.8 0.00 0 3.7 0.70 0.00 0.64 0.00 --- --- --- --- --- --- --- --- 
                   
Dynamics                
 0.3 0.5 0.5 0.09 0.2 97.2 0.30 0.00 0.25 0.00 0.08 0.00 0.00 0.00 0.20 0.00 0.00 0.00 
 0.3 0.5 0.5 0.17 0.4 100 0.32 0.01 0.25 0.00 0.17 0.00 0.00 0.00 0.39 0.01 -0.01 0.01 
 0.3 0.5 0.8 0.09 0.2 100 0.30 0.00 0.40 0.00 0.08 0.00 0.00 0.00 0.20 0.00 0.00 0.00 
 0.3 0.5 0.8 0.17 0.4 100 0.30 0.00 0.40 0.00 0.17 0.00 0.00 0.00 0.40 0.00 0.00 0.00 
 0.3 0.8 0.5 0.09 0.2 100 0.30 0.00 0.40 0.00 0.09 0.00 0.00 0.00 0.20 0.00 0.00 0.00 
 0.3 0.8 0.5 0.17 0.4 100 0.30 0.00 0.40 0.00 0.17 0.00 0.00 0.00 0.40 0.00 0.00 0.00 
 0.3 0.8 0.8 0.09 0.2 100 0.30 0.00 0.64 0.00 0.09 0.00 0.00 0.00 0.20 0.00 0.00 0.00 
 0.3 0.8 0.8 0.17 0.4 100 0.30 0.00 0.64 0.00 0.17 0.00 0.00 0.00 0.40 0.00 0.00 0.00 
 0.7 0.5 0.5 0.47 0.2 100* 0.70 0.00 0.25 0.00 0.45 0.01 -0.01 0.01 0.20 0.00 0.00 0.00 
 0.7 0.5 0.5 0.93 0.4 100† 0.70 0.00 0.25 0.00 0.92 0.01 -0.01 0.01 0.40 0.00 0.00 0.00 
 0.7 0.5 0.8 0.47 0.2 100 0.70 0.00 0.40 0.00 0.47 0.00 0.00 0.00 0.20 0.00 0.00 0.00 
 0.7 0.5 0.8 0.93 0.4 100 0.70 0.00 0.40 0.00 0.94 0.00 0.01 0.00 0.40 0.00 0.00 0.00 
 0.7 0.8 0.5 0.47 0.2 100 0.70 0.00 0.40 0.00 0.47 0.00 0.00 0.00 0.20 0.00 0.00 0.00 
 0.7 0.8 0.5 0.93 0.4 100 0.70 0.00 0.40 0.00 0.95 0.00 0.01 0.00 0.40 0.00 0.00 0.00 
 0.7 0.8 0.8 0.47 0.2 100 0.70 0.00 0.64 0.00 0.47 0.00 0.00 0.00 0.20 0.00 0.00 0.00 
 0.7 0.8 0.8 0.93 0.4 100 0.70 0.00 0.64 0.00 0.93 0.00 0.00 0.00 0.40 0.00 0.00 0.00 
 

Percentages for * and † are based on 997 and 936 comparisons, respectively, because closed 
models could not be fit to some datasets. 
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Table 1.6 Results from abundance models fit to simulated datasets designed to mimic a sampling 
scheme that tests for and quantifies changes in site superpopulation size, rather than 
instantaneous abundance.  We generated 1000 datasets for each combination of simulation 
parameters.  Whether or not each individual using the site was available to be detected was 
independent during each sampling period, and thus the detection estimates tend to approximate 
papd while the distribution parameters approximate the superpopulation size (λ0).    When no 
changes in site superpopulation occurred (no dynamics), static models were chosen the majority 
of the time.  When population dynamics were present, open models were selected most 
frequently, generating accurate and precise estimates of changes in superpopulation size. 
 
 Simulation parameters % open Dist (λ0)     Det (papd) Recruitment (φ)                   Apparent survival (ω)          
 λ0 pa pd φ ω selected Mean Var Mean Var Mean Var Bias MSE Mean Var Bias MSE 
 
No dynamics                
   
 1.0 0.5 0.5 0.0 1.0 7.8 1.00 0.00 0.25 0.00 --- --- --- --- --- --- --- --- 
 1.0 0.5 0.8 0.0 1.0 5.3 1.00 0.00 0.40 0.00 --- --- --- --- --- --- --- --- 
 1.0 0.8 0.5 0.0 1.0 5.5 1.00 0.00 0.40 0.00 --- --- --- --- --- --- --- --- 
 1.0 0.8 0.8 0.0 1.0 4.5 1.00 0.00 0.64 0.00 --- --- --- --- --- --- --- --- 
 2.0 0.5 0.5 0.0 1.0 8.1 2.01 0.01 0.25 0.00 --- --- --- --- --- --- --- --- 
 2.0 0.5 0.8 0.0 1.0 5.8 2.00 0.01 0.40 0.00 --- --- --- --- --- --- --- --- 
 2.0 0.8 0.5 0.0 1.0 7.6 2.00 0.01 0.40 0.00 --- --- --- --- --- --- --- --- 
 2.0 0.8 0.8 0.0 1.0 3.3 2.00 0.00 0.64 0.00 --- --- --- --- --- --- --- --- 
                   
Dynamics                 
  
 1.0 0.5 0.5 0.2 0.8 100 1.00 0.01 0.25 0.00 0.20 0.00 0.00 0.00 0.80 0.00 0.00 0.00 
 1.0 0.5 0.5 0.4 0.6 100 1.01 0.01 0.25 0.00 0.40 0.00 0.00 0.00 0.60 0.00 0.00 0.00 
 1.0 0.5 0.8 0.2 0.8 100 1.00 0.00 0.40 0.00 0.20 0.00 0.00 0.00 0.80 0.00 0.00 0.00 
 1.0 0.5 0.8 0.4 0.6 100 1.00 0.00 0.40 0.00 0.40 0.00 0.00 0.00 0.60 0.00 0.00 0.00 
 1.0 0.8 0.5 0.2 0.8 100 1.00 0.00 0.40 0.00 0.20 0.00 0.00 0.00 0.80 0.00 0.00 0.00 
 1.0 0.8 0.5 0.4 0.6 100 1.00 0.00 0.40 0.00 0.40 0.00 0.00 0.00 0.60 0.00 0.00 0.00 
 1.0 0.8 0.8 0.2 0.8 100 1.00 0.00 0.64 0.00 0.20 0.00 0.00 0.00 0.80 0.00 0.00 0.00 
 1.0 0.8 0.8 0.4 0.6 100 1.00 0.00 0.64 0.00 0.40 0.00 0.00 0.00 0.60 0.00 0.00 0.00 
 2.0 0.5 0.5 0.2 0.8 100 2.02 0.02 0.25 0.00 0.20 0.01 0.00 0.01 0.80 0.00 0.00 0.00 
 2.0 0.5 0.5 0.4 0.6 100 2.02 0.02 0.25 0.00 0.40 0.01 0.00 0.01 0.60 0.00 0.00 0.00 
 2.0 0.5 0.8 0.2 0.8 100 2.01 0.01 0.40 0.00 0.20 0.00 0.00 0.00 0.80 0.00 0.00 0.00 
 2.0 0.5 0.8 0.4 0.6 100 2.00 0.01 0.40 0.00 0.40 0.00 0.00 0.00 0.60 0.00 0.00 0.00 
 2.0 0.8 0.5 0.2 0.8 100 2.01 0.01 0.40 0.00 0.20 0.00 0.00 0.00 0.80 0.00 0.00 0.00 
 2.0 0.8 0.5 0.4 0.6 100 2.00 0.01 0.40 0.00 0.40 0.00 0.00 0.00 0.60 0.00 0.00 0.00 
 2.0 0.8 0.8 0.2 0.8 100 2.00 0.01 0.64 0.00 0.20 0.00 0.00 0.00 0.80 0.00 0.00 0.00 
 2.0 0.8 0.8 0.4 0.6 100 2.00 0.00 0.64 0.00 0.40 0.00 0.00 0.00 0.60 0.00 0.00 0.00 
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Table 1.7 Results from occupancy models fit to simulated datasets designed to mimic a sampling 
scheme that tests for and quantifies changes in instantaneous occupancy, rather than site use.  We 
generated 1000 datasets for each combination of simulation parameters.  Whether or not any 
individual using the site was available to be detected could only change every third visit between 
primary periods, and thus the detection estimates tend to approximate pd while the distribution 
parameters approximate the instantaneous occupancy rate (ψ0pa).    Dynamic models were 
selected nearly 100% of the time regardless of whether changes in site use actually occurred.  
Consequently, the colonization and extinction rates are overestimate those rates of change 
because they are confounded with changes in instantaneous occupancy stemming from 
temporary emigration. 
 
 Simulation parameters % open Dist (ψ0pa)  Det (pd)      Colonization (γ)                   Extinction (ε)                       
 ψ0 pa pd γ ε selected Mean Var Mean Var Mean Var Bias MSE Mean Var Bias MSE 
 
No dynamics                
 0.3 0.5 0.5 0.00 0 100 0.16 0.00 0.47 0.00 0.07 0.00 0.07 0.01 0.39 0.00 0.39 0.15 
 0.3 0.5 0.8 0.00 0 100 0.15 0.00 0.80 0.00 0.09 0.00 0.09 0.01 0.49 0.00 0.49 0.24 
 0.3 0.8 0.5 0.00 0 98.7 0.26 0.00 0.46 0.00 0.03 0.00 0.03 0.00 0.08 0.00 0.08 0.01 
 0.3 0.8 0.8 0.00 0 99.9 0.24 0.00 0.78 0.00 0.05 0.00 0.05 0.00 0.15 0.00 0.15 0.02 
 0.7 0.5 0.5 0.00 0 100 0.35 0.00 0.50 0.00 0.26 0.00 0.26 0.07 0.48 0.00 0.48 0.24 
 0.7 0.5 0.8 0.00 0 100 0.35 0.00 0.80 0.00 0.27 0.00 0.27 0.07 0.50 0.00 0.50 0.25 
 0.7 0.8 0.5 0.00 0 99.6 0.58 0.00 0.47 0.00 0.17 0.00 0.17 0.03 0.11 0.00 0.11 0.01 
 0.7 0.8 0.8 0.00 0 100 0.56 0.00 0.80 0.00 0.25 0.00 0.25 0.06 0.19 0.00 0.19 0.04 
                   
Dynamics                 
 0.3 0.5 0.5 0.09 0.2 100 0.15 0.00 0.49 0.00 0.10 0.00 0.02 0.00 0.57 0.00 0.37 0.14 
 0.3 0.5 0.5 0.17 0.4 100 0.15 0.00 0.50 0.00 0.12 0.00 -0.05 0.00 0.70 0.00 0.30 0.09 
 0.3 0.5 0.8 0.09 0.2 100 0.15 0.00 0.80 0.00 0.11 0.00 0.02 0.00 0.60 0.00 0.40 0.16 
 0.3 0.5 0.8 0.17 0.4 100 0.15 0.00 0.80 0.00 0.12 0.00 -0.05 0.00 0.70 0.00 0.30 0.09 
 0.3 0.8 0.5 0.09 0.2 100 0.24 0.00 0.49 0.00 0.10 0.00 0.02 0.00 0.32 0.00 0.12 0.02 
 0.3 0.8 0.5 0.17 0.4 100 0.24 0.00 0.50 0.00 0.16 0.00 -0.01 0.00 0.52 0.00 0.12 0.01 
 0.3 0.8 0.8 0.09 0.2 100 0.24 0.00 0.80 0.00 0.11 0.00 0.03 0.00 0.36 0.00 0.16 0.03 
 0.3 0.8 0.8 0.17 0.4 100 0.24 0.00 0.80 0.00 0.16 0.00 -0.01 0.00 0.52 0.00 0.12 0.02 
 0.7 0.5 0.5 0.47 0.2 100 0.35 0.00 0.50 0.00 0.32 0.00 -0.14 0.02 0.60 0.00 0.40 0.16 
 0.7 0.5 0.5 0.93 0.4 100 0.35 0.00 0.50 0.00 0.38 0.00 -0.55 0.31 0.70 0.00 0.30 0.09 
 0.7 0.5 0.8 0.47 0.2 100 0.35 0.00 0.80 0.00 0.32 0.00 -0.14 0.02 0.60 0.00 0.40 0.16 
 0.7 0.5 0.8 0.93 0.4 100 0.35 0.00 0.80 0.00 0.38 0.00 -0.56 0.31 0.70 0.00 0.30 0.09 
 0.7 0.8 0.5 0.47 0.2 100 0.56 0.00 0.50 0.00 0.46 0.00 -0.01 0.00 0.36 0.00 0.16 0.03 
 0.7 0.8 0.5 0.93 0.4 100 0.56 0.00 0.50 0.00 0.66 0.00 -0.27 0.07 0.52 0.00 0.12 0.02 
 0.7 0.8 0.8 0.47 0.2 100 0.56 0.00 0.80 0.00 0.46 0.00 -0.01 0.00 0.36 0.00 0.16 0.03 
 0.7 0.8 0.8 0.93 0.4 100 0.56 0.00 0.80 0.00 0.66 0.00 -0.27 0.07 0.52 0.00 0.12 0.02 
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Table 1.8 Results from abundance models fit to simulated datasets designed to mimic a sampling 
scheme that tests for and quantifies changes in instantaneous abundance, rather than 
superpopulation size.  We generated 1000 datasets for each combination of simulation 
parameters.  Whether or not each individual using the site was available to be detected could 
only change every third visit between primary periods, and thus the detection estimates tend to 
approximate pd while the distribution parameters approximate instantaneous abundance (λ0pa).    
Dynamic models were selected nearly 100% of the time regardless of whether changes in 
superpopulation size actually occurred.  Consequently, the estimates of recruitment and apparent 
survival are biased for those rates of change because they are confounded with changes in 
instantaneous abundance stemming from temporary emigration.  
 
 Simulation parameters % open Dist (λ0pa)  Det (pd)      Recruitment (φ)                   Apparent survival (ω)          
 λ0 pa pd φ ω selected Mean Var Mean Var Mean Var Bias MSE Mean Var Bias MSE 
                   
No dynamics                
   
 1.0 0.5 0.5 0.0 1.0 100 0.51 0.00 0.48 0.00 0.22 0.00 0.22 0.05 0.57 0.00 -0.43 0.19 
 1.0 0.5 0.8 0.0 1.0 100 0.50 0.00 0.80 0.00 0.25 0.00 0.25 0.06 0.50 0.00 -0.50 0.25 
 1.0 0.8 0.5 0.0 1.0 100 0.85 0.00 0.47 0.00 0.08 0.00 0.08 0.01 0.90 0.00 -0.10 0.01 
 1.0 0.8 0.8 0.0 1.0 100 0.80 0.00 0.79 0.00 0.14 0.00 0.14 0.02 0.83 0.00 -0.17 0.03 
 2.0 0.5 0.5 0.0 1.0 100 1.01 0.00 0.49 0.00 0.46 0.00 0.46 0.22 0.55 0.00 -0.45 0.21 
 2.0 0.5 0.8 0.0 1.0 100 1.00 0.00 0.80 0.00 0.50 0.00 0.50 0.25 0.50 0.00 -0.50 0.25 
 2.0 0.8 0.5 0.0 1.0 98.9 1.68 0.01 0.48 0.00 0.19 0.00 0.19 0.04 0.89 0.00 -0.11 0.01 
 2.0 0.8 0.8 0.0 1.0 100 1.61 0.00 0.79 0.00 0.29 0.00 0.29 0.08 0.82 0.00 -0.18 0.03 
                   
Dynamics                 
  
 1.0 0.5 0.5 0.2 0.8 100 0.50 0.00 0.49 0.00 0.29 0.00 0.09 0.01 0.42 0.00 -0.38 0.14 
 1.0 0.5 0.5 0.4 0.6 100 0.50 0.00 0.50 0.00 0.35 0.00 -0.05 0.00 0.31 0.00 -0.29 0.09 
 1.0 0.5 0.8 0.2 0.8 100 0.50 0.00 0.80 0.00 0.30 0.00 0.10 0.01 0.40 0.00 -0.40 0.16 
 1.0 0.5 0.8 0.4 0.6 100 0.50 0.00 0.80 0.00 0.35 0.00 -0.05 0.00 0.30 0.00 -0.30 0.09 
 1.0 0.8 0.5 0.2 0.8 100 0.81 0.00 0.49 0.00 0.27 0.00 0.07 0.01 0.67 0.00 -0.13 0.02 
 1.0 0.8 0.5 0.4 0.6 100 0.80 0.00 0.50 0.00 0.41 0.00 0.01 0.00 0.49 0.00 -0.11 0.01 
 1.0 0.8 0.8 0.2 0.8 100 0.80 0.00 0.80 0.00 0.29 0.00 0.09 0.01 0.64 0.00 -0.16 0.02 
 1.0 0.8 0.8 0.4 0.6 100 0.80 0.00 0.80 0.00 0.42 0.00 0.02 0.00 0.48 0.00 -0.12 0.01 
 2.0 0.5 0.5 0.2 0.8 100 1.01 0.00 0.50 0.00 0.46 0.00 0.26 0.07 0.42 0.00 -0.38 0.15 
 2.0 0.5 0.5 0.4 0.6 100 1.01 0.00 0.50 0.00 0.46 0.00 0.06 0.00 0.31 0.00 -0.29 0.08 
 2.0 0.5 0.8 0.2 0.8 100 1.00 0.00 0.80 0.00 0.48 0.00 0.28 0.08 0.40 0.00 -0.40 0.16 
 2.0 0.5 0.8 0.4 0.6 100 1.00 0.00 0.80 0.00 0.47 0.00 0.07 0.01 0.30 0.00 -0.30 0.09 
 2.0 0.8 0.5 0.2 0.8 100 1.62 0.00 0.49 0.00 0.36 0.00 0.16 0.03 0.67 0.00 -0.13 0.02 
 2.0 0.8 0.5 0.4 0.6 100 1.61 0.01 0.50 0.00 0.48 0.00 0.08 0.01 0.49 0.00 -0.11 0.01 
 2.0 0.8 0.8 0.2 0.8 100 1.60 0.00 0.80 0.00 0.40 0.00 0.20 0.04 0.65 0.00 -0.15 0.02 
 2.0 0.8 0.8 0.4 0.6 100 1.60 0.00 0.80 0.00 0.49 0.00 0.09 0.01 0.48 0.00 -0.12 0.01 
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Figure 1.5 A comparison of the parameter estimates generated by open occupancy (left) and abundance (right) 
models fit to the confounded TE/dynamics and isolated TE empirical datasets for 19 forest-breeding songbirds.  
Error bars represent 95% Wald confidence intervals and the dashed line indicates no difference in estimates.  P-
values are the result of a pairwise t-test.  Most parameter estimates were statistically indistinguishable under this 
sampling scheme when primary periods were separated by 2 days versus 17 days. 
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Figure 1.6 A comparison of the parameter estimates generated by open occupancy (left) and abundance (right) 
models fit to the confounded TE/dynamics and isolated dynamics datasets for nine (occupancy) and eight 
(abundance) forest-breeding songbirds.  Error bars represent 95% Wald confidence intervals and the dashed line 
indicates no difference in estimates.  P-values are the result of a pairwise t-test. Most parameter estimates were 
statistically different when TE was adequately incorporated into the detection estimate. 



34 

Effects of Fragmentation on Avian Distributions, Dynamics, and Richness 
Dynamic occupancy models were unfortunately not able to achieve convergence for 7 

species (Yellow-throated Vireo, Summer Tanager, Blue Jay, Hairy Woodpecker, Carolina 
Chickadee, Carolina Wren, and Downy Woodpecker).  Indeed, this became a problem with less 
common species as well, and thus the reason we truncated our analyses with these 30 common 
species.    Initial occupancy was significantly influenced by one or more of the local vegetation 
principal components for 16 of the remaining 23 species, with PC 1 having influence on the most 
species (Table 1.10).  Initial occupancy rates for 2 species were positively influenced by edge 
distance (Great-crested Flycatcher and Northern Flicker), and rates for 3 species negatively so 
(Common Yellowthroat, Indigo Bunting, and Yellow-breasted Chat).  These latter 3 species are 
widely known to prefer forest edges (Rodewald 2015). 

Initial occupancy of 16 species was significantly influenced by one or more of our 
landscape variables (habitat amount, patch size, or their interaction).  The effect of patch size 

Figure 1.7 In order to quantify true population dynamics independently from temporary emigration (TE) rates, 
secondary samples should be spaced far enough apart in time such that probability of individual availability is 
independent on each repeated visit, but true changes in superpopulations are negligible.  In (a), the gray box 
represents the maximum length of a primary sampling period, and three secondary samples are spaced so that 
probability of availability is independent on each occasion.  If samples are conducted closer together in time, 
population dynamics will be confounded with TE rates.  If secondary samples occur outside of the gray box, 
dynamic rates will be confounded with detection probability.  In (b), TE and population dynamics occur at similar 
rates, and the two processes cannot be distinguished using Pollock’s (1982) robust sampling design. 
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increased as habitat amount decreased for only 7 species, but none of these effects was statistically 
significant, providing no support for the threshold hypothesis (Andren 1994; Fahrig 2003).  The 
effect of patch size on initial occupancy was positive for only 8 species, and significantly positive 
for only 3.  Occupancy rates for 2 additional species decreased significantly as patch size increased.  
Nonetheless, occupancy rates for 8 species were influenced by patch size in ways that could not 
be explained by habitat amount alone, suggesting that the habitat amount hypothesis (Fahrig 2013) 
may not be applicable for some species.  Additionally, amount of habitat had a positive effect on 
initial occupancy for only 10 species, half of which were statistically significant.  Occupancy rates 
for 8 species, on the other hand, were significantly negatively impacted by habitat amount. 

Metapopulation theory predicts that colonization rates should increase as habitat amount 
increases, and that was true for the majority (12) of our 23 species.  However, the effect of amount 
on colonization was only statistically significant for 3 species (Table 1.11).  Similarly, extinction 
rates should decrease as patch size increases, and again that was true for the majority (14) of our 
species.  However, this effect was only statistically significant for 4 species (Table 1.12).  Patch 

size effected colonization rates 
(beyond what could be 
explained by habitat amount) 
for 6 species, and on extinction 
rates for 7, again suggesting 
that the habitat amount 
hypothesis may not apply to 
some species. 
 If species distribution patterns 
are driven by inter-annual 
colonization and extinction 
rates, then we would expect to 
see strong positive correlation 
between predicted initial 
occupancy and colonization 
rates.  This was true for 10 
species, though we also saw 
significant negative 
correlation for 7 species 
(Figure 1.8).  Similarly, we’d 
expect to see significant 
negative correlation between 
predicted initial occupancy 
and extinction rates, and this 
was, in fact true for the 
majority (20) of species 
(Figure 1.8). 

 Figure 1.8 Pearson’s correlation coefficients (and confidence intervals) for the 
relationship between predicted initial occupancy and predicted colonization (top) 
and extinction (bottom) rates for 23 species based on point counts conducted 
between 2011 and 2013. 
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For our community analysis, we determined that 72 recorded species actually breed in the 
region and can be reasonably sampled with point counts.  Of those 72 species, we classified 21 as 
forest edge specialists, 23 as forest generalists, and 8 as forest interior specialists; the other 20 
species were considered habitat generalists and excluded from modeling (Table 1.2).  We found 
very little evidence that the effect of forest patch size changed as a function of the amount of forest 
in the local landscape.  Credible intervals for the patch.size-by-amount interaction term overlapped 
zero for the community mean of all three habitat groups, and for 46 (88%) of 52 species.  We 
found no evidence for lack of fit in the model that included the interaction term (p = 0.571), nor in 
the model that excluded this term (p = 0.568).  In fact, the posterior distributions for all parameters 
shared between the two models were nearly identical.  Therefore, we present the results from the 
simpler model below, as interpretation of those parameter estimates is more straightforward. 

Estimates for the effects of patch size per se on occupancy rates revealed substantial 
differences in the response of habitat groups to fragmentation.  The estimate of the average patch 
size effect was significantly positive for interior specialists, significantly negative for edge 
specialists, and approximately zero for habitat generalists (Fig. 1.9).  In fact, 78% of species that 
were significantly positively associated with patch size were interior specialists, and 86% that were 
significantly negatively associated with patch size were edge specialists.  These results were also 
reflected in emergent patterns of species richness.  Predicted richness values increased with patch 
size for interior specialists, and decreased with patch size for edge specialists, while there was no 
strong trend for forest generalists or for all species combined (Fig. 1.10). 

The effects of forest amount were much more variable within habitat groups; the credible 
intervals for the average effect of forest amount overlapped zero for all groups (Fig. 1.9).  
Nonetheless, a much greater proportion of interior species were significantly positively associated 
with forest amount (50%), when compared to the generalist (13%) and edge (14%) groups.  
Surprisingly, 16 total species were significantly negatively associated with the amount of forest 
within 2 km, including over half of the forest generalists.  Of these 16 species, 11 (69%) are 
obligate primary (Downy Woodpecker, Hairy Woodpecker, Red-bellied Woodpecker, Red-headed 
Woodpecker, and Northern Flicker) or secondary (Carolina Chickadee, Prothonotary Warbler, 
Tufted Titmouse, White-breasted Nuthatch, Carolina Wren, and Great Crested Flycatcher) cavity 
nesters (Rodewald 2015).  Again, these results were reflected in the emergent richness patterns; 
while predicted richness of interior species increased with increasing forest cover, predicted 
richness of edge specialists, forest generalists, and all species combined was actually greatest at 
low forest cover values (Fig. 1.10). 

At a finer scale, one or more local habitat covariates (edge distance, PC1, PC2, or PC3) 
influenced the probability of occupancy for 26 (50%) species (Table 1.13).  In fact, the estimates 
of the effects of edge distance confirmed that our habitat group classifications were relatively 
accurate.  On average, probability of occupancy was greater at points further from the edge for 
interior specialists, and greater at points close to the edge for edge specialists; for all 23 forest 
generalists, the credible intervals for the effect of edge distance overlapped zero (Fig. 1.10)
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Figure 1.9. Posterior means and 95% credible intervals for the effects of a) edge distance, b) amount of forest within 2 
km, and c) log-transformed patch size on probability of occupancy for breeding forest bird communities.  Species were 
divided into three forest habitat groups (interior specialist, forest generalist, or edge specialist), and the mean effect of the 
covariate on members of each group was estimated along with individual effects.  Within each habitat group, species are 
listed from most common (top) to least common, or equivalently, from most influential on the group mean estimate, to 
least.  Note that all covariates were standardized with a mean of 0 and standard deviation of 1 prior to model fitting. 
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Results from these analyses yielded no support for the fragmentation threshold hypothesis, 
which suggests that fragmentation should have greater effects on species distributions when habitat 
amount drops below approximately 30% (Andren 1994; Fahrig 2003).  The minimum habitat 
amount for any of our sample points was approximately 11%, and only 20 of our points were 
surrounded by less than 30% forest cover, and thus, it is plausible that we simply did not have 
enough data for points below this threshold to detect a significant interaction effect.  Similarly, we 
found little support for Fahrig’s (2013) habitat amount hypothesis. In contrast to these well-
established ideas, our results unequivocally demonstrate that patch size per se has a significant 
influence on the distribution pattern of many species. Moreover, the relative impact of patch size 
is above and beyond the amount of forest it contributes to the local landscape.  Finally, while 
species richness varies little with patch size, community composition does change in predictable 
ways. 

Our results suggest that the patch size effects are likely driven by patch geometry rather 
than the colonization and extinction dynamics.  Although we did see a high degree of positive 
correlation between initial occupancy rates and colonization rates, and negative correlation 
between initial occupancy and extinction rates, neither process was influenced by patch size for 
most species.  Moreover, we did not find any evidence that total species richness increased with 
increasing patch size.  Rather, we found that the average patch size effect on occupancy was 
significantly positive for species richness of interior specialists, significantly negative for edge 
specialists, and approximately zero for forest generalists (Fig. 1.19).  Bender et al. (1998) identified 
a similar pattern in their review of patch size effects on animal densities and pointed out that the 
amount of habitable area is severely overestimated for interior species at low patch sizes, and for 
edge species at large patch sizes.  Our results may have been driven by a similar mechanism, 
because the size of a contiguous habitable interior patch would increase with forest patch size, 
while the concentration of edge habitat would actually be greatest in small patches. 

Figure 1.10. Predicted richness (± 95% credible intervals) of breeding forest birds occupying a 50 m radius forest plot 
varies as a function of forest patch size (left) local forest cover (right), and habitat group.  Predicted richness values 
were calculated from each of 6,000 draws from the posterior distributions of a community occupancy model, and 
represent the sum of the predicted occupancy probabilities of 52 species when all other local and landscape variables 
are held constant at their mean. 
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Contrary to the results from other studies (Andren 1994, McGarigal and McComb 1995, 
Trzcinski et al. 1999, McGarigal and Cushman 2002, Fahrig 2003, 2013, 2017, Turner 2005), we 
did not find a reduction in the amount of forest cover to be overwhelmingly detrimental to bird 
distributions in our study area.   In fact, we found the opposite pattern for many species, particularly 
cavity nesters (Fig. 1.19).  We interpret this as an indication that availability of cavity trees is 
somehow inversely related with forest cover in our study region.  Tree mortality tends to be greater 
near forest edges (e.g., Chen et al. 1992, Esseen 1994), and it is possible that landscapes with lower 
forest cover in our study tended to have greater edge-to-area ratios, though this is admittedly 
speculative.  Regardless of the mechanism, failure to account for the distribution of cavity trees 
likely meant that forest cover was a poor measure of habitat amount, even for many of our forest 
generalist species. 

There is widespread consensus that testing the predictions of island biogeography theory, 
metapopulation theory, or the relative effects of patch size and habitat amount requires defining 
habitat uniquely for each species (Betts et al. 2014, Hanski 2015) or species group (Gonzalez et 
al. 2010, Fahrig 2013).  Because both our patch size and habitat amount measures were likely 
imprecise for most species, our study probably does not constitute a rigorous test of these 
controversial topics. Unfortunately, designing multi-species studies that both account for 
idiosyncrasies in habitat requirements (Fahrig 2013, Betts et al. 2014, Hanski 2015), and minimize 
correlation between composition and configuration variables (Fahrig 2003, Hadley and Betts 
2016) for all species would require an extraordinary financial and logistical effort.  The spatial 
distribution of sampling points may need to be unique for each species, and even then, it may be 
unclear how to define patch boundaries (Betts et al. 2006, 2007, 2014).  Thus, while we certainly 
acknowledge that these fine scale distinctions are critical for testing theory, our results are quite 
clear on a practical level: forest patch size per se does influence the distribution of many species, 
particularly interior and edge specialists. 

Fahrig (2017) recently noted that the vast majority (76%) of significant fragmentation 
effects found in the literature are positive (Fahrig 2017).  That is, the distributions of individual 
species are far more likely to increase, rather than decrease, with fragmentation.  While it may be 
arguable whether focal patch studies such as ours truly test fragmentation effects (McGarigal and 
Cushman 2002, Fahrig 2003, 2017), our results notably contrast with one of Fahrig’s (2017) main 
conclusions that “there is no justification for assigning lower conservation value to a small patch 
than to an equivalent area within a large patch…”  Occupancy probability was not only higher for 
interior species in large forest patches, but members of this group also tend to be of significantly 
greater conservation concern than forest edge (t = 2.92, p = 0.005) or generalist (t = 2.81, p = 
0.007) species (NABCI 2016; Fig. 1.11).  Indeed, the ratio of interior to edge specialists in our 
study region may help explain the overwhelming majority of positive fragmentation effects; if 
species that prefer edge habitat are simply more common, one would expect to find positive effects 
of reduced patch size more often.  Regardless of the mechanism, our results clearly demonstrate 
that larger forest patches do, in fact, have greater conservation value for many species. 
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 Many have argued that there is no value in 
managing habitat patches because: larger 
patches do not tend to have higher species 
richness, as predicted by Island Biogeography 
Thoery,  (e.g., Fahrig 2013, Mendenhall et al. 
2014); patch boundaries typically do not 
contain demographically distinct units as 
required in a metapopulation framework 
(McIntyre and Barrett 1992, Wiens 1994, 
Baguette 2004, Manning et al. 2004, Fischer 
and Lindenmayer 2006, Fahrig 2013); and the 
amount of habitat is vastly more important than 
the size of any given patch (Andren 1994, 
McGarigal and McComb 1995, Trzcinski et al. 
1999, McGarigal and Cushman 2002, Fahrig 
2003, 2013, 2017, Turner 2005).  Yet the fact 
of the matter is that some species require large 
forest patches in order to have any habitat 
available to them at all.  We acknowledge that 
a conservation strategy focused on maintaining 

large forest patches will absolutely not be beneficial for all or even most species (Fahrig 2017); 
however, given that core forest area has become extremely scarce worldwide (Haddad et al. 2015), 
protecting large forest patches may, in fact, be more immediately pressing in our study region and 
in many other parts of the world (e.g., Robinson et al. 1995, Gibson et al. 2013). 

Species Distribution Models for Common Breeding Species 
Prediction success based on validation datasets was unfortunately lower than we would 

have liked.  AUC values for the 30 species ranged from a low of 0.63 to a high of 0.86, with a 
mean of only 0.72 (Table 1.14).  Only 18 species had BRTs with an AUC of ≥ 0.7, and thus SDMs 
were only constructed for those species.  Perhaps a large part of the problem stemmed from the 
fact that survey-level covariates (observer, time of day, and Julian date) had by far the greatest 
relative influence on observed distribution patterns in models for all species (Figures 1.12 and 
1.13).  This indicates that observed distribution patterns are heavily influenced by imperfect 
detection, which may hinder the ability to discern true relationships with habitat features (Gu and 
Swihart 2004).  Habitat features measured at the finest spatial scales (150 m and 500 m) tended to 
have the greatest influence on observed distribution patterns (Figure 1.12).  In addition, Landsat 
TM band 4 metrics tended to have the strongest influence on the responses, followed by elevation 
and stream distance (Figure 1.13).  However, all measured explanatory variables had non-trivial 
influence the distributions of one or more species.  Figure 1.14 depicts an image of the SDM 
developed for Wood Thrush, and all SDMs will be provided to the DoD as geo-rectified image 
(GeoTiff).  

Figure 1.11. The distribution of conservation concern 
scores for 52 species classified as edge specialists, 
forest generalists, or interior specialists (NABCI 2016).  
Interior specialists, which tend to be positively 
associated with forest patch size, also tend to be of 
greatest conservation concern. 
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Table 1.14 Area under the receiver operating characteristic curve (AUC) for boosted regression 
tree (BRT) models fit for 30 common bird species in southern Indiana.  An AUC of greater than 
0.7 indicates that the model has useful discriminatory power (Hosmer and Lemeshow 2000), and 
thus species distribution models were constructed from the BRTs for only the first 18 species 
listed. 
 

Species Validation AUC 
  
Ovenbird 0.86 
Hooded Warbler 0.81 
Common Yellowthroat 0.79 
Yellow-breasted Chat 0.79 
Acadian Flycatcher 0.78 
Northern Cardinal 0.77 
White-eyed Vireo 0.76 
Blue-gray Gnatcatcher 0.75 
Northern Parula 0.75 
Indigo Bunting 0.74 
Wood Thrush 0.74 
Red-eyed Vireo 0.73 
Gray Catbird 0.72 
Carolina Wren 0.72 
Red-bellied Woodpecker 0.72 
Eastern Towhee 0.72 
Yellow-throated Warbler 0.70 
Scarlet Tanager 0.70 
Kentucky Warbler 0.69 
Great-crested Flycatcher 0.69 
Blue Jay 0.68 
White-breasted Nuthatch 0.68 
Eastern-wood Pewee 0.67 
Carolina Chickadee 0.67 
Yellow-throated Vireo 0.66 
Tufted Titmouse 0.66 
Hairy Woodpecker 0.66 
Downy Woodpecker 0.65 
Summer Tanager 0.65 
Northern Flicker 0.63 
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Conclusions and Implications for Future Research 
Our results can be extrapolated to provide a number of useful recommendations to DoD 

wildlife managers.  First, when interest is in quantifying population dynamics, identifying source-
sink habitats, or population trends from samples of unmarked animals, there are a few key     

 

Figure 1.12 Mean (± SE) relative influence of explanatory covariates on species 
distributions across all species grouped by scale of measurement.  The survey-level 
explanatory variables (observer, time of day, and Julian date) were measured every 
time a site was visited.  All other explanatory variables (mean and SD of Landsat TM 
bands, stream distance, and elevation) were measured at 4 spatial scales (150 m, 500 
m, 1000 m, and 2000 m). 

Figure 1.13 Mean (± SE) relative influence of explanatory covariates on species 
distributions across all species grouped by data source.  The survey-level 
explanatory variables (observer, time of day, and Julian date) were measured every 
time a site was visited.  All other explanatory variables (mean and SD of Landsat 
TM bands, stream distance, and elevation) were measured at 4 spatial scales (150 
m, 500 m, 1000 m, and 2000 m). 
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rules to follow.  First, when temporary emigration from sample sites is not of concern, studies may 
use distance (Buckland et al. 2001; Royle et al. 2004), time of detection (Farnsworth et al. 2002; 
Alldredge et al. 2007), double-observer (Nichols et al. 2000; Alldredge et al. 2006) or repeated 
sampling (MacKenzie et al. 2002; Royle & Nichols 2003; Royle 2004) methods to quantify 
occupancy or abundance patterns while accounting for imperfect detection.  In situations where 
TE is possible, however, repeated sampling protocols are essential, and samples within primary 
periods should be spaced such that TE occurs randomly and independently on each visit, but rates 
population dynamics are negligible.  Only then can managers generate accurate estimates of 
distributional changes. 

Secondly, while our results indicated that colonization and extinction rates were not 
influenced by fragmentation for most bird species utilizing DoD properties and surrounding areas, 
we were only able to model these rates between breeding seasons.  Species that migrate obviously 
tend to be much more mobile between breeding seasons, and thus these results may not reflect how 
fragmentation influences dispersal within a breeding season.  Juveniles prospecting for future 
breeding sites in late summer may be particularly limited by fragmentation, and thus future work 
should focus on estimating within-season dynamic rates, while appropriately accounting for the 
effects of TE. 

Figure 1.14 An image of the species distribution model (SDM) developed for Wood Thrush in southern Indiana based on 
breeding season point count data. 
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Finally, while our results may be limited by the fact that habitat amount and patch size 
were not measured accurately for all species, they unequivocally demonstrate that maintaining 
large forest patches is critical for supporting interior specialists, which tend to be of greatest 
conservation concern.  As a next step, we intend to utilize our SDMs to quantify patch size and 
habitat amount on a species-by-species basis.  We will then compare distribution models for the 
same species using the generic and species-specific quantifications of landscape metrics.  This will 
allow us to test the hypotheses that including species-specific landscape metrics in these models 
will: 1) increase the amount of variability explained by those landscape features, thereby 
increasing the number of species deemed fragmentation sensitive; and 2) augment the relative 
importance of those landscape features on distributions of each species, indicating a greater degree 
of sensitivity to fragmentation than estimated using generic measurements.  If both of these 
hypotheses are supported, we will have strong evidence that the lack of congruency between 
landscape theory and empirical data has been driven, in part, by poor landscape measurements. 
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Chapter 2- Estimating vital rates of Wood thrush at Monitoring Avian 
Productivity and Survivorship (MAPS) Stations 

 
Abstract 

The Monitoring Avian Productivity and Survivorship program (MAPS) is a cooperative 
mist-netting and bird-banding program that has been implemented at hundreds of sites (stations) 
across North America each summer for more than 20 years. MAPS has proven an attractive option 
for land managers charged with monitoring landbirds because demographic data for multiple 
species can be gathered with relatively modest effort. Here, we summarize data and results from 
MAPS stations operated at 18 sites in southern Indiana between 2011-2014 (eight of these stations 
were also operated in years prior to 2011). The 18 stations were arranged within three locations 
(i.e., clusters) of 6 stations each. Each location was represented by a contiguous landholding, 
including: 1) Naval Support Activity Crane (CRANE), 2) NSA Crane and Hoosier National Forest 
(IDNR), and 3) Big Oaks National Wildlife Refuge (BONWR). Twelve of these stations were also 
included within a larger study that incorporated more intensive monitoring methods to study Wood 
Thrush demography and population dynamics. We assessed spatial variation in vital rates and 
provide estimates of an index of post-fledging productivity (predicted capture ratio of young to 
adult birds) and adult apparent survival probability for Wood Thrush from MAPS data at the scale 
of stations to provide a point of comparison with the more intensive demographic study. We found 
support for spatial variation in productivity at both location and station scales. At location scale, 
productivity was lowest at IDNR (0.15; 95% CI: 0.11, 0.17) and higher at BONWR (0.23; 95% 
CI: 0.17, 0.30) and CRANE (0.27; 95% CI: 0.19, 0.38). Productivity did not correspond closely to 
fecundity values estimated for the 12 intensive demographic monitoring sites; however, we found 
that productivity was positively related to forest cover within 2 km of at these sites, suggesting 
that MAPS may accurately reflect productivity and habitat conditions at larger landscape scales. 
Similar to the pattern of productivity, adult apparent survival was also relatively low at IDNR (0.50 
[95% CI: 0.38, 0.62]) compared to the other two locations (0.60 [95% CI: 0.41, 0.75] at CRANE; 
0.65 [95% CI: 0.50, 0.77] at BONWR). Overall, these data provide not only a useful point of 
comparison for the intensive demographic monitoring efforts, but they also represent a valuable 
contribution to the larger regional and continental MAPS program.  
 

Objective 
Here, we use MAPS monitoring, constant effort mist-netting, to characterize the 

contribution of key vital rates (survival and fecundity) to population growth. This modest-effort 
approach is desirable because vital rate data can be collected across a suite of forest breeding 
species. The two primary objectives were to: 1) Examine MAPS as a tool to characterize 
demography (survival and fecundity) for a species of concern on DoD properties, the Wood thrush 
and 2) identify the local and landscape drivers of spatial variation in Wood thrush productivity on 
DoD installations and more broadly across southern Indiana. A review of the pros and cons of each 
methodological approach and their utility for assessing changes in population growth is covered 
in Chapter 4. 
 

Background 
The Monitoring Avian Productivity and Survivorship program (MAPS) is a cooperative 

mist-netting and bird-banding program established by The Institute for Bird Populations (IBP) and 
cooperators in 1989. The current MAPS field protocol was standardized in 1992 and since that 
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time > 2 million capture records have been registered at > 1200 monitoring stations across North 
America. The principal aim of MAPS since its initiation has been to provide a means of estimating 
and monitoring vital rates of landbirds across broad spatial scales via standardized replicated mist-
netting and bird banding (DeSante and Kaschube 2009). MAPS has proven an attractive option for 
land managers charged with monitoring landbirds because demographic data for multiple species 
can be gathered with relatively modest effort compared to more intensive demographic monitoring 
methods (Ralph et al. 1993). Statistical models applied to MAPS data have provided basic 
estimates of demographic parameters for > 150 landbird species (Albert et al. 2016) and have 
provided insights into spatial patterns in vital rates (Saracco et al. 2010; 2012), environmental 
drivers of vital rates (Nott et al. 2002; LaManna et al. 2012; George et al. 2015) and demographic 
causes of population change (Saracco et al. 2008; Rushing et al. 2016; Ryu et al. 2016).  

Despite the broad interest and effort invested in MAPS and important insights provided by 
the program at regional and range-wide scales (e.g., Saracco et al. 2008; Rushing et al. 2016), there 
have been few assessments of the protocol’s ability to provide accurate demographic information 
for local landscapes (Bart et al. 1999; Ralph and Dunn 2004). IBP, in collaboration with colleagues 
at the Smithsonian Migratory Bird Center (SMBC) and Oregon State University (OSU), operated 
18 MAPS stations in southern Indiana between 2011 and 2014. Here, we summarize species 
breeding status, effort, and captures at these stations and provide estimates of an index of post-
fledging productivity and adult apparent survival probability for Wood Thrush (Hylocichla 
mustelina). Twelve of the 18 MAPS stations were also the focus of intensive demographic 
monitoring efforts for Wood Thrush, providing an important test of how demographic estimates 
derived from MAPS data relates to similar parameters estimated from the more intensive 
monitoring techniques. 

 
Methods 

Study Areas 
We established 18 MAPS stations, arranged in clusters of six stations at each of three 

locations in southern Indiana in the summers of 2011-2014. The three locations were at Naval 
Support Activity Crane (CRANE), Big Oaks National Wildlife Refuge (BONWR), and NSA 
Crane and Hoosier National Forest (IDNR). Five stations at CRANE and three stations at BONWR 
had been previously operated during some or all of 1994-2008 as part of the continent-wide MAPS 
program, whereas one station at CRANE, three stations at BONWR, and the six stations at IDNR 
were newly established in 2011 (Table 2.1). Each station consisted of a sampling area of about 20 
ha. Within the central 8 ha of each station, 10 12-m long, 30-mm mesh, 4-tier nylon mist nets were 
erected at fixed net sites.   
 

Table 2.1 Monitoring Avian Productivity and Survivorship (MAPS) stations operated in 
southern Indiana in 2011-2014, history of operation prior to the present study, and total number 
of years operated as part of the MAPS program.  

Regiona Station Code Latitude Longitude Elevation 
(m) Years operated < 2011 No. 

years 
CRANE Area 14 AR14 38.84083 -86.7947 198 1994-2002, 2004-2008 18 
CRANE East Boggs EABO 38.79417 -86.8356 152 1994-2002, 2004-2008 18 
CRANE First Creek FIRS 38.87139 -86.9025 162 1994-2002, 2004-2008 18 
CRANE Seedtick Creek SEED 38.75972 -86.8847 149 1994-2002, 2004-2008 18 
CRANE Sulphur Creek SULP 38.88528 -86.7372 177 1994-2002, 2004-2008 18 
CRANE Sycamore SYCA 38.85389 -86.7342 173  4 



 58 

IDNR McCormick River MCRI 39.30306 -86.7339 183  4 
IDNR Martin State Forest 1 MARTb 38.97139 -86.8556 190  4 
IDNR Martin State Forest 2 MRTS 38.72889 -86.8939 175  4 
IDNR McCormick State Park MCCRc 39.30083 -86.7136 194  4 
IDNR Owen-Putnam State Forest OWEN 39.32139 -86.8525 237  4 
IDNR Spring Mill State Park SPMI 38.72778 -86.4297 200  4 

BONWR Area 27 A A27A 39.00028 -85.3772 280  4 
BONWR Area 03 AR03 39.04639 -85.4389 235 2004-2008 9 
BONWR Area 07 AR07 39.03583 -85.4372 259 1994-2002, 2004-2008 18 
BONWR Area 31 AR31 38.96972 -85.4608 259 1994-2002, 2004-2008 18 
BONWR Area 41 AR41 38.93417 -85.37 273  4 
BONWR Area 58 AR58 38.84806 -85.4553 252  4 

a) NSWC Crane Division = CRANE, Indiana Department of Natural Resources State Parks and Forest = IDNR, Big 
Oaks National Wildlife Refuge = BONWR; b) MART = MRTN in previous reports; c) MCCR = MSTP in previous 
reports. MAPS station codes changed here for consistency with codes used for intensive monitoring plots. 
 
Mist-netting effort 

All MAPS stations were operated during 2011-2014 according to the standardized protocol 
established by IBP for use in the MAPS Program (Desante et al. 2015). Mist-netting effort data 
(i.e., the number and timing of net-hours on each day of operation) were collected in a standardized 
manner by recording net-opening, net-checking, and net-closing times to the nearest 10 minutes. 
We aimed to operate nets for six morning hours per day beginning at local sunrise. Inclement 
weather (especially heavy rain) sometimes resulted in truncated operation on a particular day. 
Nevertheless, overall effort was fairly consistent among years (Table 2.2).   
 

Table 2.2 Annual effort (net-hours) completed at the 18 MAPS stations operated in southern 
Indiana 2011-2014. 

Region Station code 2011 2012 2013 2014 
CRANE FIRS 373 393 403 374 
CRANE SEED 371 377 419 347 
CRANE SULP 370 377 401 413 
CRANE EABO 400 387 389 407 
CRANE AR14 350 390 395 411 
CRANE SYCA 372 408 373 370 
IDNR MART 415 450 458 453 
IDNR MCCR 480 469 438 413 
IDNR MCRI 441 458 442 422 
IDNR MRTS 433 443 462 473 
IDNR OWEN 421 439 455 425 
IDNR SPMI 427 434 432 436 

BONWR AR31 395 445 417 473 
BONWR AR07 464 460 419 469 
BONWR AR03 466 426 396 447 
BONWR AR41 472 469 448 469 
BONWR AR58 427 457 458 435 
BONWR A27A 443 438 387 473 

 

Breeding status  
The breeding (summer residency) status (confirmed breeder, likely breeder, non-breeder) of 

each species seen, heard, or captured at each MAPS station on each day of operation was recorded 
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using techniques similar to those employed for breeding bird atlas projects. We classified the 
landbird species captured in mist nets into six groups based upon their breeding or summer 
residency status.  Each species was classified as one of the following:   

• a regular breeder (B) if we had positive or probable evidence of breeding or summer 
residency within the boundaries of the MAPS station during all 4 years of the study.  

• a usual breeder (U) if we had positive or probable evidence of breeding or summer 
residency within the boundaries of the MAPS station during more than half but not all of 
the years that the station was operated (here for 3 of the 4 years of the study). 

• an occasional breeder (O) if we had positive or probable evidence of breeding or summer 
residency within the boundaries of the MAPS station during half or fewer of the years that 
the station was operated (here, 1-2 years). 

• A likely breeder (L) if there was at least some indication of breeding in one or more years 
based on detection(s) during the breeding season, range, and habitat. 

• a transient (T) if the species was never a breeder or summer resident at the station, but the 
station was within the overall breeding range of the species.  

• a migrant (M) if the station was not located within the overall breeding range of the species.   

Data for a given species from a given station were included in productivity analyses if the 
station was within the breeding range of the species; that is, data were included from stations where 
the species was a breeder (B, U, or O), or transient (T), but not where the species was an altitudinal 
disperser (A) or a migrant (M).  
 
Banding 

With few exceptions, all birds captured at MAPS stations were identified to species, age, and 
sex.  If unbanded, the birds were banded with USGS/BRD numbered aluminum bands.  Birds were 
released immediately upon capture and before being banded or processed if situations arose where 
bird safety was compromised.  Such situations could involve exceptionally large numbers of birds 
being captured at once, or the sudden onset of adverse weather conditions such as high winds or 
rainfall.  The following data were collected from all birds captured, including recaptures: 

• capture code (newly banded, recaptured, band changed, unbanded); 
• band number 
• species 
• age and how aged 
• sex (if possible) and how sexed (if applicable) 
• extent of skull pneumaticization 
• breeding condition of adults (i.e., extent of cloacal protuberance or brood patch) 
• extent of juvenal plumage in young birds 
• extent of body and flight-feather molt 
• extent of primary-feather wear 
• presence of molt limits and plumage characteristics 
• wing chord 
• fat class and body mass 
• date and time of capture (net-run time) 
• station and net site where captured 
• any pertinent notes 
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Habitat 
For each of the stations, simple habitat maps were prepared each year that indicated extent 

and location of major habitats, as well as structures, roads, trails, and streams. Habitat maps 
subsequent to the initial year were checked and updated whenever necessary.  Pattern and extent 
of cover of each of four major vertical layers of vegetation (upperstory, midstory, understory, and 
ground cover) in each major habitat type were classified into one of twelve pattern types and eleven 
cover categories according to guidelines in the MAPS Habitat Structure Assessment Protocol (Nott 
et al. 2003a). 
 
Computer data entry and verification 

The computer entry of all banding data was completed by John W. Shipman of Zoological 
Data Processing, Socorro, NM.  The critical data for each banding record (capture code, band 
number, species, age, sex, date, capture time, station, and net number) were proofed by hand 
against the raw data and any computer entry errors were corrected.  Computer entry of effort and 
vegetation data was completed by IBP biologists using custom data entry programs.  All banding 
data were then run through a series of verification programs as follows: 

 Clean-up programs to check the validity of all codes entered and the ranges of all 
numerical data. 

 Cross-check programs to compare station, date, and net fields from the banding data 
with those from the summary of mist netting effort data. 

 Cross-check programs to compare species, age, and sex determinations against degree 
of skull pneumaticization, breeding condition (extent of cloacal protuberance and 
brood patch), and extent of body and flight-feather molt, primary-feather wear, and 
juvenal plumage. 

 Screening programs which allow identification of unusual or duplicate band numbers 
or unusual band sizes for each species. 

 Verification programs to screen banding and recapture data from all years of operation 
for inconsistent species, age, or sex determinations for each band number. 

Any discrepancies or suspicious data identified by any of these programs were examined manually 
and corrected if necessary. Wing chord, weight, station of capture, date, and any pertinent notes 
were used as supplementary information for the correct determination of species, age, and sex in 
all of these verification processes. 
 
Data Analysis 

For our target species, Wood Thrush, we provide estimates of demographic rates, 
specifically productivity (predicted ratio of young/adult birds) and adult apparent survival 
probability.  

We assessed support for variation in productivity among sites by applying logit-linear 
models to the MAPS age-specific (hatching-year v. after-hatching-year) capture data. The response 
variable in models represented the probability of a captured bird being a young (hatching year) 
bird. We first assessed annual variation in productivity with a generalized linear mixed model that 
included fixed year effects and zero-mean random station effects and compared results to a model 
that only included a fixed intercept and random station effects (i.e., “dot” model) using a likelihood 
ratio test. We then assessed variation among locations (station clusters) by comparing a model 
with fixed location effects (levels = CRANE, IDNR, BONWR) and random station effects and 
comparing to a model with only random station effects. Generalized linear mixed models were fit 
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using the ‘lme4’ package (Bates et al. 2014) in the statistical program R (R Core Team 2015). We 
assessed variation in productivity among stations with a generalized linear model (‘glm’ function 
in R) that included fixed station effects and compared to an intercept-only model using a likelihood 
ratio test. Location- and station-specific reproductive index estimates ( ) were derived by 
exponentiating coefficent estimates from models with intercepts excluded to provide a response 
metric on the scale of per-capita reproduction (i.e., young/adult; Robinson et al. 2007). Profile 
confidence intervals (95% CIs) were estimated using the ‘confint’ function in R (R Core Team 
2015). To assess the relationship between productivity and the gradient of forest cover represented 
by the larger intensive demographic monitoring study, we also fit a productivity model that 
included a covariate calculated for the 12 stations included in the larger project that represented 
forest cover within 2 km of the station.  

To assess apparent adult survival we implemented a Cormack-Jolly-Seber (CJS) model 
accounting for transients (Hines et al. 2003) to estimate adult apparent survival probabilities at 
each station with program MARK (White and Burnham 1999) in R (R Core Team 2015) using the 
R package RMark (Laake 2013). We considered three models to assess spatial variation in 
survival: 1) no-variation (i.e., intercept-only, or “dot” model); 2) variation among locations (fixed 
location effect); and 2) variation among stations (fixed station effect. For all models we modeled 
recapture probability as a logit-linear function of a station-specific covariate representing the mean 
number of times individuals were captured at the station per season (Saracco et al. 2008). We 
compared the i = 1,…,3 models using Akaike’s Information Criterion for small samples, AICc, and 
AICc model weights, wi (Burnham and Anderson 2002).  

Results and Discussion 
Breeding Status Lists 

We recorded 128 species at the 18 MAPS stations during 2011-2014 (Appendix A). Sixty-
two of these species were confirmed as breeding species at one or more stations; nearly all of 
which were encountered during mist-netting operations (all but Wood Duck and Chimney Swift). 
The number of breeding species encountered at stations ranged from a low of 54 at A27A 
(BONWR) to 107 at AR31 (BONWR). The average number of breeding species encountered 
ranged from a low of 63 at IDNR, to 79 at BONWR, and 84 at CRANE. 
 
Banding Summary 

We captured and banded or recaptured 7,036 individuals of 65 species at the 18 MAPS 
stations during the course of the study (Table 2.3). We recorded 722 between-year recaptures of 
these individuals. Wood Thrush was the most commonly captured species, with 1133 year-unique 
individuals captured, followed by Kentucky Warbler (880 year-unique individuals), and Acadian 
Flycatcher (692 year-unique individuals). More than 2/3 of the species had fewer than 100 year-
unique captures over the four years of the study. 
 
Table 2.3 Summary of year-unique captures for 65 bird species banded at 18 Monitoring Avian 
Productivity and Survivorship (MAPS) stations in southern Indiana, 2011-2014.  
Common name Scientific name 2011 2012 2013 2014 Total AHY HY AHY HY AHY HY AHY HY 
American Woodcock Scolopax minor 0 0 0 0 1 0 0 0 1 
Yellow-billed Cuckoo Coccyzus americanus 4 0 0 0 0 0 1 0 5 
Red-headed Woodpecker Melanerpes erythrocephalus 0 0 1 0 0 0 0 0 1 

RI
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Red-bellied Woodpecker Melanerpes carolinus 5 0 7 2 4 2 3 2 25 
Downy Woodpecker Picoides pubescens 8 15 17 34 20 32 18 28 172 
Hairy Woodpecker Picoides villosus 5 3 8 5 4 8 12 7 52 
Yellow-shafted Flicker Colaptes a. auratus 0 0 0 4 5 0 1 0 10 
Eastern Wood-Pewee Contopus virens 42 1 21 0 30 1 26 1 122 
Yellow-bellied Flycatcher Empidonax flaviventris 0 0 3 0 1 0 0 0 4 
Acadian Flycatcher Empidonax virescens 190 11 154 13 154 15 146 9 692 
Traill's Flycatcher Empidonax alnorum/traillii 11 1 4 0 4 0 0 0 20 
Least Flycatcher Empidonax minimus 0 0 0 0 1 0 0 0 1 
Eastern Phoebe Sayornis phoebe 3 0 4 1 5 0 8 2 23 
Great Crested Flycatcher Myiarchus crinitus 0 0 0 0 0 0 1 0 1 
White-eyed Vireo Vireo griseus 35 11 44 11 34 12 47 15 209 
Yellow-throated Vireo Vireo flavifrons 0 0 4 1 4 0 2 0 11 
Red-eyed Vireo Vireo olivaceus 87 2 73 2 44 1 56 3 268 
Blue Jay Cyanocitta cristata 17 0 10 1 14 2 5 3 52 
Carolina Chickadee Poecile carolinensis 14 13 4 28 20 5 19 19 122 
Tufted Titmouse Baeolophus bicolor 38 29 35 49 40 28 26 24 269 
White-breasted Nuthatch Sitta carolinensis 2 4 6 11 3 6 8 3 43 
Carolina Wren Thryothorus ludovicianus 14 9 29 39 33 31 11 21 187 
Blue-gray Gnatcatcher Polioptila caerulea 5 0 3 1 7 1 7 2 26 
Eastern Bluebird Sialia sialis 1 0 1 2 1 0 0 0 5 
Veery Catharus fuscescens 0 0 0 0 0 0 1 0 1 
Gray-cheeked Thrush Catharus minimus 7 0 1 0 0 0 13 0 21 
Swainson's Thrush Catharus ustulatus 12 0 9 0 19 0 42 0 82 
Wood Thrush Hylocichla mustelina 215 45 250 43 227 42 247 64 1133 
American Robin Turdus migratorius 23 8 8 4 11 1 8 3 66 
Gray Catbird Dumetella carolinensis 82 12 74 15 63 10 75 14 345 
Brown Thrasher Toxostoma rufum 4 2 2 1 4 1 3 2 19 
Cedar Waxwing Bombycilla cedrorum 0 0 1 0 0 0 1 0 2 
Blue-winged Warbler Vermivora cyanoptera 24 6 26 0 14 3 14 2 89 
Tennessee Warbler Oreothlypis peregrina 0 0 0 0 0 0 1 0 1 
Northern Parula Setophaga americana 1 1 4 1 5 0 1 0 13 
Yellow Warbler Setophaga petechia 0 0 0 0 1 0 0 0 1 
Magnolia Warbler Setophaga magnolia 1 0 1 0 0 0 0 0 2 
Yellow-throated Warbler Setophaga dominica 2 0 0 1 0 0 0 0 3 
Prairie Warbler Setophaga discolor 5 0 13 0 5 2 9 3 37 
Bay-breasted Warbler Setophaga castanea 0 0 0 0 1 0 0 0 1 
Cerulean Warbler Setophaga cerulea 3 2 2 0 2 0 1 1 11 
Black-and-white Warbler Mniotilta varia 4 0 1 1 5 6 2 2 21 
American Redstart Setophaga ruticilla 6 1 6 1 14 3 11 3 45 
Prothonotary Warbler Protonotaria citrea 7 0 7 1 5 0 4 0 24 
Worm-eating Warbler Helmitheros vermivorum 22 9 28 7 14 20 22 18 140 
Ovenbird Seiurus aurocapilla 67 16 65 44 75 29 71 58 425 
Louisiana Waterthrush Parkesia motacilla 24 22 21 27 23 28 32 24 201 
Kentucky Warbler Geothlypis formosa 184 65 168 74 135 56 128 70 880 
Connecticut Warbler Oporornis agilis 0 0 0 0 0 0 1 0 1 
Common Yellowthroat Geothlypis trichas 74 8 90 19 62 7 64 9 333 
Hooded Warbler Setophaga citrina 49 6 65 24 42 15 33 9 243 
Canada Warbler Cardellina canadensis 1 0 1 0 1 0 2 0 5 
Yellow-breasted Chat Icteria virens 33 0 32 6 30 4 34 7 146 
Summer Tanager Piranga rubra 6 1 0 0 4 0 6 1 18 
Scarlet Tanager Piranga olivacea 31 2 30 1 18 3 28 2 115 
Eastern Towhee Pipilo erythrophthalmus 18 8 24 15 25 7 16 2 115 
Field Sparrow Spizella pusilla 12 1 10 1 13 0 5 1 43 
Song Sparrow Melospiza melodia 1 0 5 3 3 1 5 1 19 
Northern Cardinal Cardinalis cardinalis 104 10 67 21 67 24 74 25 392 



63 

Rose-breasted Grosbeak Pheucticus ludovicianus 0 0 3 0 2 0 0 0 5 
Indigo Bunting Passerina cyanea 87 2 88 2 82 6 43 3 313 
Red-winged Blackbird Agelaius phoeniceus 1 0 1 0 0 0 1 0 3 
Common Grackle Quiscalus quiscula 1 1 0 0 0 0 0 0 2 
Brown-headed Cowbird Molothrus ater 9 2 13 3 7 1 10 3 48 
American Goldfinch Spinus tristis 5 0 7 0 13 0 8 0 33 

Wood thrush Productivity 
We found no evidence of annual variation in productivity (year effects + random station 

effect model v. model with only random station effect χ2 = 3.54; d.f. = 3; P = 0.32). We did, 
however, find strong support for spatial variation in productivity. A model with fixed location 
(cluster) effects suggested differences in productivity among locations (comparison with random 
station effect only model: χ2 = 6.23; d.f. = 2; P = 0.04); with productivity lower at IDNR (  = 
0.15; 95% CI: 0.11, 0.17) than at BONWR (  = 0.23; 95% CI: 0.17, 0.30) or CRANE (  = 
0.27; 95% CI: 0.19, 0.38). Similarly, we found support for variation in productivity among stations 
(intercept-only model v. model with fixed station effects: χ2 = 30.37; d.f. = 17; P = 0.02). We were 
able to estimate productivity for 17 stations (too few captures were recorded At station AR31 on 
BONWR to estimate productivity). Of these, point estimates of productivity (RI) ranged from a 
low of 0.08 (95% CI: 0.04, 0.15) at MCCR (location: IDNR) to 0.56 (95% CI: 0.17, 1.6) at SEED 
(location: CRANE; Fig. 2.1).   

 
 

In considering just stations contained within the intensive monitoring plots, we found little 
correspondence between the MAPS productivity index values and fecundity estimates from the 
intensive monitoring plots (r = 0.03; df = 10; P = 0.92; fecundity estimates presented in Ch. 3). 
Nevertheless, MAPS productivity was positively related to the amount of forested area within 2-
km ( ˆ  = 0.001; SE = 0.001; P = 0.032; Fig. 2.2). 

RI
RI RI

Figure 2.1 Reproductive index derived as exponentiated station effects from a logit-linear model applied to age-specific 
capture data from 18 MAPS stations in southern Indiana. Colors denote location groupings. Black=CRANE, Red= IDNR, 
Green=BONWR. 
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Adult apparent survival 
The most strongly 

supported of the three 
models we considered was 
the intercept-only model (wi 
= 0.56). The survival 
probability estimate from 
this model was 0.56 (95% 
CI: 0.45-0.66). The model 
with location effects was 
competitive with the 
intercept-only model, 
(∆AICc = 0.44; wi = 0.44 ). 
Survival probabilities from 
this model ranged from a low 
of 0.50 (95%CI: 0.38, 0.62) 
at IDNR, to 0.60 (95% CI: 
0.41, 0.75) at CRANE, to a 
high of 0.65 (95% CI: 0.50, 
0.77) at BONWR (Fig. 2.3). 
The model including station 
effects was not supported by 

the data (∆AICc = 22.46; wi = 0.44). In contrast to our productivity data, we saw strong 
correspondence between MAPS survival estimates and those derived from intensive demographic 
monitoring (Fig. 2.4). 

 This study provided a rare 
opportunity for comparing 
demographic data from MAPS and 
more intensive demographic 
monitoring methodologies. While 
many (albeit not all) studies have found 
positive correspondence between 
reproductive index values from 
constant-effort mist-netting and other 
fecundity metrics, such as nesting 
success or numbers of fledglings 
produced, we found that the station-
scale MAPS productivity index for 
Wood Thrush was not very 
representative of fecundity values 
calculated from the intensive 
monitoring study at 12 stations where 
both monitoring methodologies were 

employed. It is possible that lack of correspondence resulted from differences in age-specific 
detection probabilities or movements among sites; however, it seems likely that discordance 

Figure 2.2 Predicted MAPS reproductive index across the range of 2-km forest cover 
values observed at 12 MAPS stations shared with the intensive demographic 
monitoring project. Predicted values were derived from a logit-linear model applied to 
age-specific capture data. 

Figure 2.3 Adult apparent survival rate estimates derived from 
MAPS data collected at 18 Indiana MAPS stations 2011-2014 from 
a model including fixed location (cluster) effects. Colors denote 
location groupings shown for stations in Fig 1.  
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between estimates largely reflected overall differences in scales of sampling between the two 
methodologies. Whereas the scale of sampling of the intensive demographic monitoring program 
was known (40-50 ha), the scale of MAPS sampling was not. Nevertheless, correlation with 2-km 
radius forest cover suggests that MAPS reproductive index values may reflect habitat quality at a 
larger landscape scale (> 1000 ha). Correlation with habitat at 2-km radius is consistent with 
findings of other MAPS habitat analyses (Nott et al. 2003b; 2005). Although this approximate 
scale may be generally representative of MAPS sampling, we suggest that more study is needed 
to better understand the scale of MAPS sampling across a variety of species and landscapes.  

In addition to providing a point of comparison for the intensive demographic monitoring 
efforts, the MAPS data collected here represent an important contribution to larger regional and 
continental demographic monitoring efforts. Indeed, correlation of MAPS productivity indices 
with population attributes at regional scales suggest that the index is most useful for studies of 
broader scale demographic patterns (Saracco et al. 2008; Rushing et al. 2016). MAPS sampling 
completed here provides not only a snapshot of demography for the time window sampled here, 
but for eight of the stations, also adds to a longer time series of data that can be used to assess 
trends in demographic rates. We look forward to potential opportunities for continuing this 
important work in future years.  

Conclusions and Implications for Future Research 
The results of the MAPS monitoring provide important insight into Wood thrush 

population dynamics at both the local and regional scale. MAPS data as presented here were able 
to provide vital demographic information about 65 species of forest birds many of which have 
shown sharp declines over the last decade. Although vital rates (productivity and survival) are only 
highlighted for the focal species of the grant, Wood thrush, future work will examine comparable 
analyses for a host of species to examine similarities/ differences in demographic performance on 
DoD installations. Our results show that apparent survival rates from MAPS and intensive 
demographic approaches are highly correlated. Overall, MAPS estimates tend to be biased low 
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Figure 2.4 The positive correlation between apparent survival estimates derived from 
MAPS monitoring and intensive demographic monitoring. Comparison of apparent 
survival estimates was only possible for the 12 intensive demographic sites that were 
paired with MAPS station in the study design. 
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because this methodological approach does not invest time and energy into unique color-marking 
and resighting effort. This reduction in effort makes MAPS more cost effective if the primary 
management goal is to only estimate apparent survival. In contrast, we found little correspondence 
between the MAPS reproductive index and measures of fecundity derived from intensive 
demographic monitoring. These results underscore potential issues of scale and suggest that the 
MAPS approach may not be capturing local productivity. Regardless, MAPS data does appear to 
be able to tell us about regional trends and can be used to understand how regional land-use impacts 
avian species of concern. Future analytical research will need to be focused on how MAPS data 
can inform the scale of avian population dynamics. Moreover, insight from the dynamic occupancy 
modeling presented in Chapter 1 strongly suggest that the influence of temporary emigration may 
also lead to bias in the estimation of demographic vital rates.  
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Chapter 3- Demography across the annual cycle: spatial and temporal 
variation in vital rates drives population dynamics in a migratory bird 

 

Abstract 
Untangling the spatial and temporal processes that influence population dynamics remains 

one of the great ecological challenges because demographic data must be collected and integrated 
across multiple scales. This problem is especially acute for migratory species due to the scale of 
their annual movements and the fact that population dynamics are jointly shaped by variation in 
vital rates across heterogeneous habitats and throughout the annual cycle. Here, we use intensive 
demographic data across 12 breeding sites in southern Indiana and 4 non-breeding sites in Belize 
to parametrize a full-annual-cycle integrated population model to estimate stage-specific 
demographic rates, including survival during both spring and fall migration, and their contribution 
to population growth. We demonstrate the utility of this approach using demographic data from a 
declining migratory songbird, the Wood Thrush (Hylocichla mustelina), collected across a 
breeding habitat quality gradient and on its wintering grounds. We found that variance in 
population growth was most strongly determined by variation in spring migration survival, but 
also that the relative contribution of vital rates to population growth was habitat-specific. 
Population growth in high-quality habitat was most sensitive to variation in fecundity and 
migration survival, whereas in low-quality sites, population growth was most sensitive to adult 
breeding-season survival. These results elucidate how full-annual-cycle vital rates, particularly 
migration survival, interact with spatial variation in habitat quality to influence population 
dynamics in a migratory species.  
 

Objective 
Here, we use intensive demographic monitoring to estimate multiple vital rates and 

understand their contribution to population dynamics across a habitat quality gradient. Our 
intensive demographic monitoring effort took a full-annual cycle approach monitoring vital rates 
for Wood thrush during both the breeding and non-breeding season. We identified linked 
populations (Indiana and Belize) using data from light-level geolocators. During the breeding 
season characterized the following vital rates: apparent adult survival, fecundity, rebreeding 
probability and post-fledging survival. On the non-breeding grounds, we collected apparent adult 
survival. The objectives with this data were to: 1) build a full-annual cycle integrated population 
model, 2) examine the relative contributions of different vital rates to variation in population 
growth and identify sources and sinks and 3) understand how variation in habitat quality (local 
habitat structure) influences population growth. Overall, these analyses enabled us to characterize 
which vital rates and habitat characteristics drive population change. 
 

Background 
Determining how and why populations change in abundance (i.e., population dynamics) 

has been a central focus of ecology since its inception. For most vertebrate populations, however, 
we still lack an understanding of how complex spatial and temporal processes interact to influence 
population growth and subsequent persistence (Oro 2013). Numerous theoretical models have 
been developed to examine how vital rates (i.e., survival, reproductive output, emigration, and 
immigration) contribute to temporal (Sutherland 1996; Runge & Marra 2005) and spatial (Pulliam 
1988; Hanski 1999) variation in population growth, but empirical validations of these models 
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rarely account for both spatial heterogeneity in habitat quality or temporal stochasticity in 
environmental conditions (Pearson & Fraterrigo 2011). Given the scale and severity of 
environmental change in terrestrial ecosystems, developing a framework that can quantify the 
drivers of population dynamics across space and time is critical to advancing basic ecological 
theory and conservation.  

 The challenges of quantifying vital rates and their contribution to population dynamics are 
magnified for migratory animals because large-scale seasonal movements can induce complex 
spatiotemporal interactions that shape population processes (Nichols 1996). Understanding how 
demographic processes affect population dynamics in these species is difficult because limitation 
can occur at any stage of the annual cycle, including breeding, wintering, and autumn and spring 
migration (Sherry & Holmes 1995; Sutherland 1996). To further complicate matters, stage-specific 
demographic and environmental processes often interact such that no single period can be 
understood outside the context of the entire cycle (Marra et al. 2015). Although some progress has 
been made in quantifying stage-specific survival for game species (Ward et al. 1997) and large-
bodied species capable of carrying satellite transmitters (Klaassen et al. 2014; Lok et al. 2015), 
estimates of survival during spring and fall migration are unavailable for the vast majority of 
migratory species. In addition, understanding how stage-specific vital rates influence population 
dynamics requires models that can integrate demographic data from across the annual cycle. Full-
annual-cycle models have been developed for several well-studied waterfowl species (Mattsson et 
al. 2012; Robinson et al. 2016b), but application of these frameworks to other migratory species 
have been hindered by the inability to track individuals throughout the annual cycle, missing 
information on the linkages between breeding and wintering populations (i.e., migratory 
connectivity), and the lack of large-scale demographic monitoring data for linked populations. 
 The relative contribution of vital rates to population dynamics is also unlikely to be uniform 
across space because migratory species typically inhabit heterogeneous habitats. A number of 
studies have documented habitat-specific vital rates (Holmes et al. 1996; Murphy 2001; Pereira & 
Novaro 2014) and population growth rates (Kreuzer & Huntly 2003; Getz et al. 2005), yet we 
know little about the differential contribution of vital rates to population growth across 
heterogeneous habitats. Many processes, including density-dependent dispersal (Gundersen et al. 
2001), covariance among vital rates (Sæther & Bakke 2000; Sim et al. 2011), and seasonal 
interactions (Runge & Marra 2005) could influence the relative importance of each vital rate to 
population growth among habitats that differ in quality. The contribution of vital rates may also 
be scale-dependent such that certain rates (e.g., fecundity and immigration) may be more important 
at local scales and others at regional scales (Diez & Giladi 2011). Ultimately, understanding how 
spatial variation influences the relative contribution of vital rates to population growth, and how 
this spatial variation interacts with temporal processes are essential elements of vertebrate 
population ecology and conservation science. 

The development of integrated population models (IPMs) provides a powerful framework 
for combining multiple data sources (e.g., counts, mark-recapture, reproductive monitoring) to 
improve estimation of vital rates and their contribution to population growth. Recent applications 
of these models have provided insights into the demographic processes that drive population 
dynamics of several species (Schaub et al. 2007; Rhodes et al. 2011; Chandler & Clark 2014). To 
date, however, IPMs have focused solely on estimation of vital rates and their influence on 
population dynamics during a single stage of the annual cycle (e.g., breeding: Robinson et al. 2014; 
wintering: Weegman et al. 2016). Ultimately, advancing our understanding of how spatial and 
temporal factors drive population dynamics for migratory animals necessitates a model framework 
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that can characterize demographic processes across the entire annual cycle (Hostetler et al. 2015). 
Here, we present a full-annual-cycle IPM parameterized using habitat-specific demographic data 
collected from of a migratory songbird, the Wood Thrush (Hylocichla mustelina). By integrating 
data during the breeding and wintering periods, we were able to estimate stage-specific vital rates, 
including survival during spring and fall migration, and assess the contribution of each rate to 
spatial and temporal variation in population growth rate ( Results from this analysis estimate 
the contribution of stage- and habitat-specific vital rates to population dynamics of a migratory 
bird, information needed to advance conservation planning. 

Methods 
Field Methods 

Here, we present a truncated version of the methods, but a full version of both field and 
analytical approached is presented in Appendix A. Breeding fieldwork was conducted from 2011 
to 2014 at 12 study sites across southern Indiana, USA (Fig. 3.1; Appendix Table A1). Starting on 
the third week of April each year, we systematically surveyed each plot to locate all adult Wood 
Thrush pairs and nesting attempts. Territorial adults (n = 1807) were captured in mist nets, banded 
with a USGS aluminum band and a unique combination of colors bands, aged (second-year or after 

Figure 3.1 Map of study sites and demographically linked populations of Wood Thrush used to parameterize the 
full-annual-cycle IPM. A) Wood Thrush breeding range is shown in green and the winter range in blue. Population 
linkages (migratory connectivity) were estimated from light-level geolocators (see Stanley et al. 2015) and the 
kernel density plot shows the estimated probability distribution of wintering Wood Thrush tracked from our 
breeding population. The approximate autumn (red) and spring (yellow) migration route of one individual is 
shown. The orange star represents the non-breeding study location at Belize Foundation for Research and 
Environmental Education. B) Regional forest cover and the distribution of the 12 breeding study plots distributed 
across southern Indiana, USA. Orange points denote the geographic location of study plots and point size 
indicates count of trees > 30 cm DBH, a proxy for Wood Thrush habitat quality.  
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second-year), sexed using molt and plumage criteria, measured (unflattened wing chord and tarsus 
length), and weighed. After initial marking, we revisited each territory every 3-5 days to conduct 
extensive resighting efforts for each color-banded individual. All nests (n = 946) were monitored 
approximately every three days to record hatching success (fledge or fail) and the number of 
offspring. Detailed 5m radius vegetation plots were conducted at all nest following the sampling 
protocol outlined for point-counts in Chapter 1. Prior to fledging (~day 8), all nestlings (n = 1346) 
were banded with a plot/year specific color combination. At the time of banding, 210 late stage 
nestlings were fitted with radio-transmitters to estimate post-fledging survival. Each individual 
was located every 2-3 days until either known death or day 30 post-fledging. 

Winter mark-recapture data was collected in the southern region of the Maya Mountains, 
Toledo District, Belize. We selected Belize as it should be representative of the winter conditions 
experienced by Wood Thrush breeding in southern Indiana (Stanley et al. 2015; Fig. 3.1). Two 
banding sites were located on the Belize Foundation for Research and Environmental Education’s 
field station and two were in the Bladen Nature Reserve. At each site, banding was conducted in 
five monthly pulses (November - March) from 2003 to 2013. During each pulse, banding was 
conducted over two consecutive days using 16 mist nets. Upon initial capture, each individual (n 
= 1388) was fitted with a uniquely numbered USGS aluminum band, aged, weighed, and measured 
(as for breeding birds, see above). Upon recapture, each individual's band number was recorded 
and the same morphological measures were taken. See supplementary information (SI1) for details 
regarding breeding and winter data collection. 
 
Integrated population model 

Using the breeding and wintering demographic data, we estimated vital rates and population 
growth using a female-only, two age-class integrated population model (IPM). Complete model 
parameterization is provided in Appendix A (see Table A2). The model consisted of six 
conditionally related sub-models that link the demographic data to the state variables of interest: 

State-space model to estimate population size: For each study plot, the total population in each 
year (Np,t) consisted of three classes of individuals: local recruits, surviving adults, and immigrants 
(Kéry & Schaub 2012). The numbers of local recruits and surviving adults changed annually as a 
function of fecundity, survival, and population size in previous year. The number of immigrants 
was treated as a latent variable which was informed by both demographic rate estimates and the 
count data (Schaub & Abadi 2010). The total abundance on each plot in each year was then linked 
to the observed population size (total number of active nests on each plot) using a Poisson 
observation model (Kéry & Schaub 2012). 
 
Poisson GLM to estimate fecundity: For each plot, annual per capita fecundity  ( ௣݂,௧) was estimated 
using as a Poisson generalized linear model that linked the total number of offspring in each year 
to the total number of females in the population (Kéry & Schaub 2012). We used a linear model 
with a random plot × year interaction to estimate spatial and temporal variation in fecundity. The 
estimated fecundity from nest-monitoring data potentially underestimates true fecundity due to 
movement between rebreeding or double brooding attempts. To account for this potential bias, we 
measured the total reproductive success of 77 female Wood Thrush that were radio-tracked on our 
study plots as part of a separate study. We then used the ratio of the total reproductive success for 
known-fate females to the nest-monitoring based estimates from the same years and plots to obtain 
estimates of true fecundity. 
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Known-fate model to estimate post-fledging survival: We estimated daily post-fledging survival 
probabilities by converting the fledgling radio-tracking data into daily capture histories (1 = known 
alive, 0 = known dead) from day 1 post-fledging until either the individual's fate became unknown 
(i.e., censored) or until day 30 post-fledging. For each year t and plot p, we used a linear model 
with random year and plot × day effects to estimate spatial and temporal variation in daily survival 
probability. Annual plot-specific post-fledging survival probability (i.e., survival to 30 days post-
fledging) was then estimated as the product of the 29 daily estimates. 
 
Cormack-Jolly-Seber model to estimate juvenile survival: Using the breeding mark-resight data 
from individuals originally captured as free-flying hatch year birds at the end of the breeding 
season, we developed a Cormack-Jolly-Seber (CJS) model to estimate the apparent juvenile 
survival (i.e., September - April) while accounting for imperfect detection (Kéry & Schaub 2012). 
Annual and plot-specific variation in juvenile survival was modeled as linear function of random 
year and plot effects. 
 
CJS models with transients to estimate adult survival: We used the breeding mark-resight and 
winter mark-recapture data to estimate adult survival both within and between stationary periods. 
Because Wood Thrush are known to move extensively within both the breeding and wintering 
periods, we used a modification of the basic CJS model to obtain unbiased estimates of apparent 
survival while accounting for transients (Pradel et al. 1997). Initial analysis of these data indicated 
no difference in over-winter survival for juveniles and adults so we pooled these individuals and 
estimated a single over-winter survival probability. The breeding capture data consisted of 4 
monthly capture occasions (May - August) in each year (2011-2014) and three between-breeding 
occasions. The winter data consisted of 5 monthly occasions (November - March) in each year 
(2011-2013) and two between-winter occasions. For the breeding model, we modeled monthly 
survival as a linear function of random annual and month × plot effects. A similar model was used 
to estimate monthly winter survival probabilities, but without plot-level variation. Because the 
winter capture data ended in 2013, we modeled monthly winter survival in 2014 as the mean of 
the long-term estimates. For each stationary period (breeding or winter), annual stage-specific 
survival was estimated as the product of the monthly survival estimates.  

The joint likelihood of the integrated model was estimated using JAGS (Plummer 2003) 
called from R (R Development Core Team 2015) using the package jagsUI (Kellner 2016). See 
supplementary information (SI1) for details regarding model structure, prior distributions, and 
MCMC estimation. 

For each plot, annual and overall population growth rates (ߣ௣) were derived directly from 
the vital rate estimates (Pulliam 1996). In some cases, populations that cannot support themselves 
through local recruitment processes may experience positive populations growth (ߣ௣ > 1) due to 
high immigration rates. Therefore, we also calculated annual and mean self-recruitment rates 
(Runge et al. 2006), denoted  ܴ௣, by removing immigration from estimates of ߣ௣. Thus, ܴ௣ > 1 
indicates plots that were able to maintain or increase abundance through local recruitment 
processes only and we interpreted self-recruitment rate as a demographic measure of habitat 
quality. Initial inspection of the ܴ ௣ values indicated that self-recruitment rate was highly correlated 
with the number of large trees (DBH > 30 cm) on each plot (0.001 > ݌ ,0.80 = ߩ), which itself is 
highly predictive of Wood Thrush occupancy in southern Indiana (J.V. Valente & T.B. Ryder 
unpub. data), suggesting that the presence of large trees is the primary habitat feature that 
determines habitat quality for Wood Thrush in this region.  
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Estimating migration and annual survival 

 The CJS models used to estimate stationary period survival also provide estimates of 
apparent survival from the end of the stationary period to the beginning of the next (i.e., September 
to April for breeding model; April - October for winter model). These between-season survival 
estimates contain information about the latent migration period survival and when combined, the 
stationary period and between-season survival estimates provide complementary information that 
can be used to estimate spring and autumn migration survival. The plot-specific estimates of adult 
survival between breeding seasons (denoted ߶஻஻೛,೟஺ௗ ) from the CJS model are equivalent to: ߶஻஻೛,೟஺ௗ = ߶஺௨௧௨௠௡೛,೟షభ஺ௗ ߶ௐ௜௡௧௘௥೟షభ߶ௌ௣௥௜௡௚೛,೟஺ௗ  
where ߶ௐ௜௡௧௘௥೟షభ is the over-winter survival estimate from the winter CJS model, and ߶஺௨௧௨௠௡೛,೟షభ஺ௗ  
and ߶ௌ௣௥௜௡௚೛,೟஺ௗ  are the estimated survival during autumn and spring migration, respectively. 
Likewise, adult survival between winters (߶஻ௐ೟஺ௗ ) is equivalent to: ߶஻ௐ೟஺ௗ = ߶෠ௌ௣௥௜௡௚೛,೟஺ௗ ߶෠ௌ௨௠௠௘௥೟߶෠஺௨௧௨௠௡೛,೟஺ௗ  
where ߶̂ is the mean stage-specific survival estimate across all plots. For juveniles, survival 
between breeding seasons is estimated in the same way as for adults. However, once wintering 
juveniles reach the breeding grounds, they become adults. Therefore, survival between winters for 
juveniles is: ߶஻ௐ೟௃ = ߶෠ௌ௣௥௜௡௚೛,೟௃ ߶෠ௌ௨௠௠௘௥೟߶෠஺௨௧௨௠௡೛,೟஺ௗ  
For both juveniles and adults, the presence of each latent annual migration survival estimate in 
multiple equations allows these rates to be estimated within the integrated framework (Appendix 
Fig. A1).  
 
Vital rate contributions to population growth 
We used life table response experiments (LTRE) to measure the contribution of each vital rate to 
annual population change while accounting for temporal variation in each rate and the covariance 
among rates (Caswell 2001; Robinson et al. 2014). We first estimated the posterior mean of the 
pair-wise covariance between vital rates and multiplied this mean matrix by the sensitivity matrices 
from each of the 30,000 posterior samples. The contribution of each rate was then estimated by 
summing the variances and covariances for each parameter and scaling the contributions to sum 
to 1 (Robinson et al. 2014). For each vital rate, we used the 95% highest posterior density interval 
(HPDI) to quantify uncertainty in contributions. In addition to quantifying contributions of the 
full-annual-cycle vital rates, we also estimated contributions from the overall rates typically used 
in most matrix population models (i.e., fecundity, juvenile apparent survival, annual adult survival, 
and immigration). To understand how contributions vary across spatial scales, we estimated 
contributions of each vital rate at both the regional scale (using the mean rates across all plots) and 
at the local (i.e., plot) scale. 
 

Results and Discussion 
Fecundity estimates were based on 1346 fledglings from 946 nests and radio tracking of 

77 breeding females. Juvenile annual survival was estimated from 209 individuals originally 
banded as nestlings, of which 21 (10.05%) recruited into our breeding populations and were 
resighted in subsequent years. Estimates of adult survival within and between breeding seasons 
were based on 1807 individuals, of which 780 (43.17%) were recaptured on ≥ 1 occasion. Post-
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fledging survival estimates were based on 210 known-fate individuals tracked using radio 
telemetry. Non-breeding survival within and between winter seasons was estimated from 1388 
individuals, of which 399 (28.75%) were recaptured on ≥ 1 occasion.  

When pooled across the 12 study plots, this population experienced positive, but uncertain 
growth across the four years of our study (95% ,1.08 = ߣ HPDI = 0.78:1.39). Population growth, 
however, was partially driven by a high immigration rate (߱ = 0.34, 0.21:0.46) and as a result, the 
self-recruitment rate (i.e., the expected rate of population growth in the absence of immigration) 
was < 1 (ܴ = 0.9, 0.48:1.3). Thus, in the absence of continued immigration from outside sources, 
this population would likely have declined over the course of our study. Despite the importance of 
immigration to maintaining the regional population, annual variation in population growth was 
most strongly driven by adult survival and juvenile recruitment (Table 3.1; Fig. 3.2). 
 
Table 3.1 Vital rate estimates and contributions to variation in population growth for Wood Thrush 
breeding in southern Indiana (2011-2014). Estimates of the vital rates and their contributions are 
the posterior means and 95% highest density posterior interval (HPDI) pooled across all years and 
all demographic plots. Seasonal survival estimates have been scaled to their equivalent monthly 
survival rates to aid comparison. The annual range provides the posterior means for minimum and 
maximum annual estimates across the four years of our study. Coefficient of variation is measured 
as the standard deviation of the annual vital rate estimates divided by the mean. Note that winter 
survival was not estimated as a function of age and therefore only one estimate is provided. The 
contribution of juvenile winter survival was negligible (posterior mean = 0.002, 95% HPDI = 
0:0.0005) and therefore only the contribution of adult winter survival is shown. 
 

Vital Rate 
Mean 

 (95% HDPI) 
Annual 
range 

Coef. 
Variation 

Contribution  
(95% HPDI) 

Overall                              
Fecundity (f) 1.84 (1.25:2.46) 1.43:2.25 0.21 0.11 (0.06:0.17) 

Immigration ( ) 0.34 (0.21:0.46) 0.33:0.36 0.04 0.06 (0.04:0.09) 
Recruitment ( J) 0.24 (0.17:0.32) 0.16:0.33 0.35 0.37 (0.29:0.45) 

Adult annual survival ( Ad) 0.58 (0.46:0.69) 0.56:0.61 0.05 0.46 (0.35:0.57) 
Seasonal                            

Adult summer survival (߶ௌ௨௠௠௘௥) 0.96 (0.91:0.99) 0.95:0.96 0.02 0.14 (0.07:0.22) 
Winter survival (߶ௐ௜௡௧௘௥) 0.98 (0.95:1) 0.98:0.98 0.01 0.06 (0.03:0.1) 

Adult autumn survival (߶஺௨௧௨௠௡஺ௗ ) 0.92 (0.84:1) 0.92:0.93 0.01 0.11 (0.05:0.17) 
Adult spring survival (߶ௌ௣௥௜௡௚஺ௗ ) 0.89 (0.71:1) 0.85:0.92 0.04 0.14 (0.07:0.23) 

Post-fledging survival (߶௉ி) 0.65 (0.44:0.86) 0.54:0.78 0.16 0.12 (0.07:0.19) 
Juvenile autumn survival (߶஺௨௧௨௠௡௃ ) 0.92 (0.77:1) 0.91:0.92 0.01 0.01 (0:0.01) 
Juvenile spring survival (߶ௌ௣௥௜௡௚௃ ) 0.48 (0.16:0.83) 0.38:0.58 0.23 0.24 (0.1:0.37) 
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Stage-specific vital rates and their 
contribution to population growth 

Combining demographic 
data from linked populations within 
a full-annual-cycle IPM allowed us 
to parse adult and juvenile survival 
into their stage-specific components. 
Mean apparent adult survival was 
highest during winter (߶ௐ௜௡௧௘௥஺  = 0.9, 
95% HPDI = 0.78:1), followed by 
spring migration (߶ௌ௣௥௜௡௚஺  = 0.89, 
0.71:1), autumn migration (߶஺௨௧௨௠௡஺  

= 0.85, 0.7:1), and summer 
(߶ௌ௨௠௠௘௥஺ = 0.84, 0.69:0.97). Thus, 
spring and autumn migration 
account for 21% and 29% of adult 
apparent mortality even though these 
stage composed only 8.33% and 
16.67% of the annual cycle. 
However, comparison of overall 
survival during each stage does not 
indicate how risk (i.e., survival per 
unit time) varies across the annual 
cycle because the four seasons of the 
annual cycle differ in length (winter 
= 5 months, spring = 1 month, 
summer = 4 months, autumn = 2 
months). When scaled to the 

equivalent monthly survival rates, survival was lowest during spring migration (Table 3.1), 
indicating this is the riskiest stage of the annual cycle for adult Wood Thrush.   

Apparent survival of juveniles was highest during winter (߶ௐ௜௡௧௘௥௃
 = 0.9, 0.78:1), followed 

by autumn migration (߶஺௨௧௨௠௡௃
 = 0.84, 0.59:1), post-fledging (߶௉ி  = 0.65, 0.44:0.86), and spring 

migration (߶ௌ௣௥௜௡௚௃
 = 0.48, 0.16:0.83). Monthly survival probability for juveniles showed a similar 

pattern (Table 3.1). As a result, spring migration and the post-fledging period accounted for 46% 
and 31% of juvenile apparent mortality, respectively, whereas autumn migration accounted for 
only 14%. 

Season- and stage-specific vital rates had different, relative effects on ߣ. Consistent with 
the high apparent mortality during spring migration, survival of juveniles and adults during this 
stage had the largest contributions to variation in ߣ (Table 3.1; Fig. 3.3). Adult summer survival, 
post-fledging survival, fecundity, and adult fall migration survival also had mean contributions 
greater than 10%. The remaining vital rates, winter survival and juvenile fall migration survival, 

Figure 3.2 Posterior distributions of the proportional contribution of 
overall demographic rates to regional annual population growth for 
Wood thrush breeding in southern Indiana, USA. For each 
demographic rate, the white line indicates the posterior mean and the 
dark grey and light grey areas indicate the 50% and 95% highest 
posterior density intervals, respectively. The demographic rates are 
ranked on the y-axis by their posterior means, from smallest to largest 
contribution.  
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had smaller effects (<6%) indicating that survival during 
these stages has little direct impact on population dynamics 
for this population. 

Habitat-specific vital rates and their contribution to 
population growth 

Mean vital rates, their relative contributions to ߣ, 
and ߣ itself varied among our 12 study plots (Fig. 3.4; 
Appendix Tables S3-S14). Nine (75%) grew over the four 
years of the study (  > 1), but only four (33.33%) had self-
recruitment rates > 1 (Tables S3-S14). Self-recruitment rate 
was negatively correlated with immigration rate (0.86- = ߩ, 
P < 0.001) and positively correlated with adult summer 
survival (0.95 = ߩ, P < 0.001) and fecundity (0.74 = ߩ, P = 
0.01). Thus, high-quality plots tended to have higher 
productivity, higher adult breeding survival and/or site 
fidelity, and lower immigration. The contributions of 
recruitment and fecundity to ߣ tended to be larger in plots 
with high self-recruitment rates (Fig. 3.4; recruitment: ߩ = 
0.87, P < 0.001; fecundity: 0.69 = ߩ, P = 0.01), while the 
contribution of adult survival tended to be larger in plots 
with low self-recruitment rates (0.91- = ߩ, P < 0.001). The 
contribution of immigration to ߣ did not vary as a function 
of self-recruitment rate (0.43- = ߩ, P = 0.17). In general, 
these results were driven by a larger contribution of juvenile 
spring migration survival in higher-quality plots, and a 
larger contribution of adult summer survival in low-quality 
plots. 

Understanding the demographic processes that 
shape population dynamics is critical to advancing 
ecological theory and to designing effective management 
strategies for species of conservation concern. Like many 
long-distance migratory species, the Wood Thrush has 
experienced population declines over the past 50 years, but 
the demographic causes of these declines remain poorly 
understood (Rushing et al. 2016a; Taylor & Stutchbury 
2016). Consistent with life history theory and empirical 
studies of similar iteroparous passerines with relatively 
long lifespans (Norman & Peach 2013; Robinson et al. 
2014), our analysis indicates that population dynamics of 
Wood Thrush breeding in southern Indiana are most 
strongly driven by variation in adult survival and juvenile 
recruitment. However, for Wood Thrush and other 
migratory species, vital rates can vary substantially across 
the stages of the annual cycle (Sillett & Holmes 2002; 
Klaassen et al. 2014) and across habitats. We used a novel 

Figure 3.3 Posterior distributions of the 
proportional contribution of seasonal 
demographic rates to regional annual 
population growth for Wood thrush breeding 
in southern Indiana, USA. For each 
demographic rate, the white line indicates 
the posterior mean and the dark grey and 
light grey areas indicate the 50% and 95% 
highest posterior density intervals, 
respectively. The demographic rates are 
ranked ordered on the y-axis by their 
posterior mean contribution to population 
growth. Colored circles indicate the stage of 
the annual cycle during which each 
demographic rate was measured (green = 
breeding, red = autumn migration, blue = 
winter, yellow = spring migration).  
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full-annual-cycle IPM to show that spring migration is a key determinant of population growth, 
but also that the relative contribution of vital rates to population growth is habitat-specific. These 
results provide new information about the ecology of migratory species and also demonstrate the 
importance of considering both temporal and spatial drivers of population dynamics.    

Although estimates of spring and autumn migration survival exist for several larger species 
that are hunted or can carry satellite transmitters (Ward et al. 1997; Klaassen et al. 2014; Lok et 
al. 2015), mortality within these stages remain relatively unknown for smaller-bodied species. 
Previous analyses of resighting data from one songbird species indicates that mortality appears to 
be concentrated in the migratory stages (Sillett & Holmes 2002), but this study was not designed 
to separate autumn from spring mortality. Our integrated approach enabled us to use mark-resight 
data to produce the first separate survival estimates for spring and autumn migration for a 
migratory passerine. For Wood Thrush, the migratory stages of the annual cycle accounted for the 
highest mortality among both adult and juvenile age-classes; however, spring was riskier than fall 
migration. Interestingly, the proportion of mortality during the migratory periods was similar to 
that of several larger-bodied bird species that have been tracked using satellite transmitters. 

Figure 3.4 Posterior distributions of the proportional contribution of (a) fecundity, (b) immigration, (c) recruitment, and (d) 
adult survival to plot-level annual population growth for Wood Thrush breeding in southern Indiana, USA. For each 
demographic rate, the white line indicates the posterior mean and the dark grey and light grey areas indicate the 50% and 
95% highest posterior density intervals, respectively. Plots are ranked on the y-axis by their self-recruitment rate (R), which 
is strongly correlated with a key proxy of habitat quality for Wood Thrush.  
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Klaassen et al. (2014) found that the migratory periods accounted for 55% of overall mortality and 
that survival was ~8% lower in spring than autumn for Osprey (Pandion haliaetus), Marsh Harriers 
(Circus aeruginosus), and Montagu’s Harriers (Circus pygargus). Similarly, Lok et al. (2015) 
found that survival during spring migration was ~16% lower in spring than autumn for Eurasian 
Spoonbills (Platalea leucorodia leucorodia). Collectively, these results suggest that high mortality 
during spring migration may be a general phenomenon across many migratory birds. As direct and 
indirect methods to quantify migration survival continue to improve, phylogenetic contrasts across 
taxa that vary in body size and life-history strategies will offer important insights into the ecology 
of migratory species.    

The ability to separately estimate apparent survival during spring and autumn migration is 
particularly important given the differential contribution of these vital rates to population 
dynamics. Juvenile and adult spring migration survival had the largest contributions to population 
growth, cumulatively accounting for ~38% of the variation in . The importance of spring 
migration survival to the population dynamics of a migratory bird has not previously been shown 
directly, but past research on the ecology of migratory birds support our results. First, most species 
of Neotropical migratory birds depart their tropical wintering grounds on spring migration when 
precipitation and insect abundance are at their annual nadir (Janzen 1973). The scarcity of food 
resources during this stage limits the ability of individuals to build fat reserves prior to migration 
(Studds & Marra 2007) and makes them more susceptible to adverse conditions experienced during 
migration (Finch et al. 2014). Second, because reproductive success is strongly tied to early arrival 
on the breeding grounds (Lozano et al. 1996), individuals are under severe time constraints during 
spring migration (Kokko 1999). Numerous empirical studies have shown that individuals migrate 
faster in spring than in autumn (Stutchbury et al. 2009; Tøttrup et al. 2011; Nilsson et al. 2013) 
and the urgency to reach the breeding grounds may further limit the ability of individuals to rest 
and refuel en route. Viewed cumulatively, our results combined with those from other studies on 
migratory birds, implicate spring migration as a critical period of the annual cycle in which 
significant mortality occurs. More work is needed to corroborate our findings in additional species. 

Although our integrated population model provides a novel method for estimating stage-
specific survival from re-sighting data, our survival estimates may be biased low by permanent 
emigration of individuals from the study plots. The similarity between our estimates of adult 
migration survival and estimates from satellite tracking (Klaassen et al. 2014; Lok et al. 2015) 
suggests that permanent emigration of adults (i.e., breeding dispersal) may not have been a major 
source of bias in our data. However, extensive natal dispersal may have biased our estimates of 
spring migration survival for first-year birds, especially in low-quality breeding habitats (Anders 
& Marshall 2005). As a result, we were unable to determine whether the low survival of juveniles 
during spring migration is the result of low true survival, high natal dispersal, or a combination of 
the two. If extensive natal dispersal contributed to the low estimates of spring migration survival, 
then annual variation in dispersal (Rushing et al. 2015) may also explain the contribution of this 
period to variation in population growth. Ultimately, habitat- and season-specific natal dispersal 
probabilities will be required to fully account for permanent emigration and reduce bias in juvenile 
survival estimation (Gilroy et al. 2012). 

Although survival during spring migration had the largest stage-specific contribution to , 
vital rates during the breeding season (adult survival, fecundity, and post-fledging survival) 
cumulatively accounted for nearly as much variation (37%; Table 1). This finding emphasizes the 
importance of breeding season limitation compared to other portions of the annual cycle for Wood 
Thrush as found by Rushing et al. (Rushing et al. 2016a, b) and corroborates similar patterns 
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documented for a number of migratory bird populations (Newton 2004). In addition, our results 
also emphasize that spatial variation in breeding habitat quality influences the contribution of vital 
rates to variance in . Environmental heterogeneity and habitat-specific demography have long 
been hypothesized to be central to spatial variation in population growth (Holt 1984; Pulliam 1988; 
Dias 1996; Hanski 1999), yet our results highlight a subtle, but important extension. We show that 
the relative contribution of vital rates to varies significantly among habitats that differ in quality. 
Recruitment and fecundity contribute more to in high-quality habitats, whereas adult survival 
contributes more to in lower quality habitats. We hypothesize that these results are driven 
primarily by high permanent emigration of adults in low-quality plots following reproductive 
failure (Part & Gustafsson 1989; Haas 1998). In contrast, low emigration of adults from high-
quality plots increases the relative importance of fecundity and recruitment. Given that fecundity 
can contribute substantially to variance in , especially in high-quality plots, our results underscore 
the need to accurately account for total annual reproductive effort (i.e., rebreeding or multiple 
brooding; Etterson et al. 2009; Sim et al. 2011). Failure to include rebreeding in our model would 
have biased fecundity estimates by -40% and thus underestimated the contribution of breeding 
season factors to  and masked conclusions about the relative importance of fecundity to 
population persistence across heterogeneous habitats. 

Our results also indicate that the contribution of immigration to population dynamics was 
scale-dependent. At the regional scale, annual variation in immigration had a small contribution to 
variation in , despite a relatively high overall immigration rate Table 1). At the plot-scale, 
however, the contribution of immigration was large (range: 0.09-0.49; mean = 0.22; Table 1) and 
in some cases greater than the contributions of other vital rates (Fig. 4). These results are consistent 
with theoretical predictions that the emigration and immigration of individuals from a population 
can be comparable to births and deaths at local scales, but are largely redistribution processes at 
regional scales (Camus & Lima 2002). Despite the contribution of immigration to  at the plot-
level, we found no evidence that immigration explained a larger portion of the variance in 
population growth in high-quality versus low-quality habitats. This result is contrary to the 
predictions of source-sink theory (Pulliam 1988; but see Gundersen et al. 2001) and suggests 
predicting the dynamics of source-sink populations requires measuring the contribution of 
immigration, not simply differences in the immigration rate.  
 Survival of adults and juveniles during winter and autumn migration collectively account 
for only ~12% of the variation in , but our estimates of the direct contribution of these stages may 
underestimate their influence on population dynamics for several reasons. First, many Wood 
Thrush move within the stationary winter period and the presence of transient individuals can have 
complex effects on population dynamics (Penteriani et al. 2011). Unfortunately, we were unable 
to estimate the survival of these transient individuals from our mark-recapture data and therefore 
could not account for their influence on . If these transient individuals experience lower or more 
variable survival, the true contribution of overwinter survival to may be larger than our results 
indicate. Second, a growing body of research has revealed the ubiquitous nature of seasonal 
interactions in migratory species, namely carry-over effects (Harrison et al. 2011). Biotic or abiotic 
conditions experienced during autumn or winter may be important in limiting Wood Thrush 
populations via indirect effects on spring migration survival and/or fecundity (Wilson et al. 2011). 
Accounting for carry-over effects would not change our estimates of vital rate contribution to 

nevertheless, determining the ultimate factors that determine variation in demographic rates is 
needed to develop management strategies that target limiting factors. Unfortunately, little is known 
about the causes of migration mortality in songbirds. Our full-annual-cycle IPM provides a 
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framework for exploring the relative importance of carry-over effects (e.g., winter habitat quality) 
versus within-season factors (e.g., weather, availability of stopover habitat, collisions), for 
example by including hypothesized drivers of migration survival as covariates in the model. 
Progress on this subject requires long-term data that enable estimates of stage-specific density 
dependence (Betini et al. 2013; Robinson et al. 2016a) and the strength of covariance between 
environmental factors in one season and fitness during subsequent stages (Harrison et al. 2011). 
Collectively, our results highlight the important contribution of the migratory stage to population 
dynamics and underscore the need to further understand the stage-specific and/or carry-over 
mechanisms that limit migration survival (Clausen et al. 2015; Paxton & Moore 2015; Hewson et 
al. 2016).  

Effective conservation of globally declining migratory species (Wilcove & Wikelski 2008) 
requires a firm understanding of when and where populations are limited. Historically, studies of 
population limitation have rarely been replicated across heterogeneous habitats (Pearson & 
Fraterrigo 2011) and have focused solely on the breeding period (Marra et al. 2015). Collectively, 
researchers have tended to ignore spatial variation in population dynamics (Rushing et al. 2016b) 
and the role of demographic processes operating during the non-breeding stages (Anteau & Afton 
2004; Baker et al. 2004; Hewson et al. 2016). In this paper, we provide an IPM framework that 
allows quantifying stage- and habitat-specific vital rates and their contribution to population 
dynamics. Given the flexibility of IPMs to accommodate multiple types of data and sub-model 
structure, continued development of this full-annual-cycle framework will enhance our 
understanding and conservation of migratory animals. For example, this framework could also be 
useful for comparative (intra- and inter-specific) demographic analyses and for testing predictions 
of life-history theory (Alerstam et al. 2003). Ultimately, we believe this analytical framework will 
advance the field of population ecology by helping to identify when and where populations are 
limited, determining how biotic and abiotic processes influence demographic rates, and predicting 
the consequences of environmental change or management strategies. 
 

Conclusions and Implications for Future Research 
These results underscore the importance of understanding how spatial and temporal variation in 
vital rates contribute to population dynamics. Previous empirical work largely identified sources 
and sinks based on single site studies that failed to account for how vital rates change across the 
annual cycle. Our results highlight that migration may be a critical phase of the annual cycle for 
Wood thrush population dynamics. The development of this full-annual cycle model should be 
broadly applicable across migratory birds and can identify when during the annual cycle species 
of concern may be limited. Although our results do underscore the importance of the migratory 
period, they also show clearly that breeding season processes account for the vast majority of 
variation in population growth. Understanding that Wood thrush populations are largely breeding 
season limited is essential for making proactive conservation decisions. This result further 
highlights that managers can make positive impacts on species of concern through habitat 
management approaches that can maximize survival, recruitment, and fecundity. Our results also 
show that habitat specific demography contributes to spatial variation in source sink dynamics in 
previously unforeseen ways. Specifically, our results show that vital rates make differential 
contributions to population growth depending on the quality of the habitat. This suggests that 
managing populations for persistence, via increasing specific vital rates, may need to be done in a 
habitat-specific manner. Moreover, while our results clearly show that immigration is still key to 
rescuing sink populations, immigration may not always be high in locations with lambda below 
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one. Given that our integrated model estimates immigration as a latent variable future work will 
be needed to compare our model estimates with those derived from other sources (i.e., isotope 
data). Isotope analyses are part of our SERDP grant and while the results were not explicitly 
presented in this report, we are actively working on this element of the research. In contrast to 
immigration, our ability to estimate emigration or understand its relative contribution to source-
sink dynamics remains a key weakness of the integrated population model approach. Demographic 
modeling has long struggled with the issues of separating permanent emigration from true 
mortality and this remains a key focus of future research. Recent analytical advances, such as 
spatial mark-recapture are one of the few methods that estimate true survival and differentiate 
mortality from emigration (within and between seasons). We collected the requisite data to build 
these models and while not part of the scope of the current project, these results will provide added 
value for our understanding of avian population dynamics. Future analyses will include spatial 
mark-recapture analyses with the Wood thrush dataset. Although our model and results have 
largely focused on the proximate drivers of population dynamics, future research must examine 
the ultimate mechanisms that shape demography. We are currently working on extending our 
integrated population model to examine how both local habitat and landscape configuration 
influence both vital rates of interest and source-sink dynamics. Likewise, our analyses highlight 
which vital rates are particularly important for Wood thrush populations on DoD installations and 
future work to better understand how these rates co-vary with environmental heterogeneity will be 
essential to create informed management practices. To these ends, we are currently working on 
detailed analyses of key factors that influence Wood thrush adult survival, recruitment and 
fecundity. 
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Chapter 4- Synthesizing what different methodological approaches tell us 
about avian demography on Department of Defense installations 

 
Abstract 

The spatial distribution and temporal stability of animal populations is a function of habitat 
quality, habitat selection, and dispersal. Source-sink dynamics – how local and regional processes 
structure populations and influence their persistence – comprise an essential aspect of population 
stability. Multiple methods are available to investigate source-sink dynamics in avian populations, 
each varying in degree of effort and expense. The Department of Defense (DoD), which manages 
nearly 25 million acres of high-value bird habitat, primarily uses the Monitoring Avian 
Productivity and Survivorship (MAPS) protocol to monitor avian populations and inform the 
management of bird species on its properties. However, the value of MAPS for quantifying avian 
source-sink dynamics at both local and regional scales has never been rigorously assessed or 
validated. Likewise, other more cost-effective avian sampling approaches, such as point counts, 
can produce accurate abundance estimates. Although improved analytical approaches have made 
count-based abundance data useful for estimating vital rates and to model population growth, these 
approaches are not widely used on DoD installations for assessing population change and/or 
health. To date, no study has validated or tested the efficacy of these three approaches for 
identifying sources and sinks, despite this information being essential for making proactive 
management decisions on DoD properties. Our results show that each method produced differing 
estimates of population growth with low concordance among sites being classified as 
sources/sinks. The uniform identification of sources across methods was true only for highest 
quality habitats (e.g., unmanaged large tracts of forest at BONWR), whereas in fragmented or 
managed habitats (e.g., Crane and Indiana Department of Natural Resource properties), estimates 
were more variable and often showed little correspondence. When comparing across techniques, 
we find a correlation between point-count based and intensive demographic estimates of 
population growth. In contrast, we see low correlation between MAPS based estimates of lambda 
and those derived from count and demographic data. Despite a correlation between point count 
and demographic estimates of lambda, these approaches often came to different conclusions about 
a site being source vs. sink. Viewed broadly, our results suggest the methodological approach 
chosen for sampling avian populations will be dependent upon the scale at which management 
decisions need to be made. In higher quality habitats or at larger spatial scales, some species of 
concern may be monitored with less expensive count based and MAPS approaches, however, in 
lower quality habitat or smaller spatial temporal demographic stochasticity will require the more 
detailed intensive demographic approach. Examination of the predictors of local population 
growth show that local habitat was the best predictor of self-recruitment rate, although models 
containing patch size and forest cover within 2 km also received some support. Specifically, forest 
structure, as measured by the number of trees with greater than 30 centimeters’ diameter breast 
height, was a very strong predictor of high quality source Wood thrush habitat. As such, habitat 
management recommendations for Wood thrush will require growth and retention of large trees as 
well as the encouragement of heterogeneous vertical foliage structure and understory shrub cover 
for nesting habitat. Finally, a comparison of occupancy (distributional patterns) and demographic 
data suggest that although count data are less precise when it comes to understanding species-
specific demography, they can be used as a heuristic tool. Specifically, congruence between the 
occupancy results and the key drivers of self-recruitment rate for Wood thrush suggest that count 
data can be an indicator of demographic performance for a broader suite of interior forest birds. 
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Objective 

Here, we synthesize the results from the three methodological approaches reported on in 
Chapters 1-3 to determine the most cost-effective tools for monitoring avian population dynamics 
and developing subsequent management strategies for avian species of concern. First, we examine 
Wood thrush (Hylocichla mustelina) population growth estimates ( ) as derived from MAPS data, 
point count data, and intensive demographic data. We specifically estimated population growth 
from each data source using N-mixture models, Pradel models and integrated population models, 
respectively. Intensive demographic monitoring is widely accepted as the most reliable method of 
estimating population growth rates (Kendall & Nichols 2004), and in comparing these estimates 
to those derived from point count and banding only (MAPS) data, we can quantify the accuracy 
and precision of these less labor intensive methods for characterizing avian population dynamics. 
Second, we examine the local and landscape predicators of self-recruitment rate for the intensive 
demographic data. Third, we examine issues of spatial scale to assess if different methodological 
approaches are useful for making prescriptive local vs. landscape management decisions. Finally, 
we compare the results from the occupancy modeling and demographic monitoring to broadly 
discuss the relationships between distributional patterns and population dynamics for a suite of 
passerine species on DoD installations. 
 

Background 
One of the most studied and publicized conservation issues of the past 25 years is the 

decline of Nearctic-Neotropical migratory bird populations (e.g., Robbins et al. 1989; James et al. 
1996; Sauer & Link 2002; Lloyd-Evans and Atwood 2004). Understanding the causes of these 
declines requires information about the factors that limit population growth year round, including 
reproductive success, survivorship, and habitat suitability (Sherry & Holmes 1995; Sillett & 
Holmes 2002). The management of Neotropical-Nearctic migratory birds is a conservation priority 
for the DoD. Much of the 30 million acres of DoD land serves as critical bird habitat and supports 
significant populations of avian species of concern (SOC). The importance of DoD installations 
for populations of migratory birds is underscored by the categorization of several bases as 
Important Bird Areas (including Crane Naval Surface Warfare Center and Big Oaks National 
Wildlife Refuge) that sustain healthy populations of forest-breeding Neotropical migrants of 
conservation concern (Nott & Morris 2007).  

Over the last two decades, the DoD has met the challenge of carrying out its mission while 
simultaneously complying with environmental laws and regulations. The Bob Stump National 
Defense Authorization Act for FY 2003 (Incidental Take of Migratory Birds During Military 
Readiness Activities) provided temporary legislative relief to the DoD by exempting military 
readiness activities (MRAs) from incidental take under the Migratory Bird Treaty Act (MBTA). 
Until recently, the MBTA focused on the direct and intentional take of migratory birds, but now 
the legislation prohibits both unpermitted “intentional” and “unintentional” take, including take 
that occurs as a result of military training and operations. In 2007, the DoD/Migratory Bird Rule 
established the conditions requiring that DoD cooperate with the USFWS if proposed or ongoing 
Military Readiness Activities were to result in significant adverse effects on populations of 
migratory birds. The USFWS can withdraw take authorization if conservation measures or 
required monitoring efforts have not been implemented. More recently, DoD wildlife managers 
have outlined a strategic bird-monitoring plan to promote management of migratory species in 
concert with the military mission (Bart et al. 2010).  
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Effective management of migratory birds requires unbiased estimates of demographic 
parameters (i.e., stage-specific survival and fecundity) within the context of the annual cycle, as 
well as predictions of how land management changes could influence these vital rates (Noon & 
Sauer 1992; Larson et al. 2004) and thus shape population structure and subsequent persistence. 
Although studies have investigated relationships between regional landscape patterns and 
population trends (e.g., Flather & Sauer 1996; Sauer et al. 1996), few have examined the 
relationship between landscape configuration and vital rates at multiple spatial and temporal scales 
(Villard et al. 1999). To be successful, management actions must be designed to influence the key 
demographic parameters responsible for population decline in a specific target species (DeSante 
1995).  
 The concepts of source-sink dynamics are well integrated into ecological theory, and a 
large number of studies on vertebrates have aimed to categorize populations as sources or sinks 
(Runge et al. 2006). This research, much of it with birds, has used a variety of approaches to 
differentiate sources from sinks. Moreover, these approaches vary widely in the effort required 
and data sources used to determine population growth trajectories and persistence probabilities. 
Some studies have quantified basic measures of presence-absence to model dynamics in patch 
occupancy (Betts et al. 2008; Kery & Royle 2010). Others have quantified attributes of site-
specific demography (reproductive success, adult survival and both apparent and simulated 
juvenile survival) to categorize populations (e.g., Donovan et al. 1995; Vierling 2000; Fauth 2001). 
Fewer studies, however, have taken a more biologically realistic approach by incorporating rates 
of immigration and emigration within focal subpopulations (e.g., Breininger et al. 1995; Hatchwell 
et al. 1996; Mumme et al. 2000). Finally, few studies measure the per capita contribution that each 
member of the focal subpopulation makes to the greater meta-population (Donacaster et al. 1997).   
 Although direct measurement of per capita survival, annual fecundity, and dispersal is the 
most unbiased and accurate method for categorizing sites as sources or sinks, this approach is 
labor-intensive and costly, and thus rarely used with birds (Webster et al. 2002; Kendall & Nichols 
2004). Alternate estimates of vital rates and population persistence can be used to indirectly 
provide information on source sink dynamics. The most widespread tool used to estimate vital 
rates of bird populations in the continental US is MAPS (Desante et al. 1995) and is the only 
program that collects data at the scales needed for assessing regional population dynamics. MAPS 
generates indices of breeding productivity and estimates of density and apparent survival rates, but 
its power to quantify source-sink dynamics remains to be tested. For example, annual estimates of 
density (local variation in population size) may be masked or accentuated by region-wide 
immigration and emigration (DeSante 1990; George et al. 1992) such that density alone may not 
indicate population viability (Van Horne 1983; Pulliam 1988; Donovan et al. 1995). In addition, 
while MAPS provides essential estimates of site-specific adult survival, this only represents a 
single age class during one part of the annual cycle: the breeding season. Moreover, the accuracy 
of the MAPS index of breeding productivity for estimating reproductive success at the relevant 
and site-specific scale has not been rigorously validated.  
 Estimation of patch-level changes in population size may be used to indirectly categorize 
source and sink areas (Hanski & Ovaskainen 2000; Pulliam & Danielson 1991; Betts et al. 2008). 
Avian point count data and dynamic N-mixture models (Dail & Madsen 2011) have been used to 
test for changes in abundance, recruitment, and apparent survival among sites within and between 
breeding seasons.  These dynamic models account for biases in site abundance and movement 
caused by imperfect detectability, a ubiquitous feature of bird surveys (Alldredge et al. 2007; Zhou 
& Griffiths 2007), and by constraining rates of gains and losses as a single parameter, one can 
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estimate site or patch level growth rates (Dail & Madsen 2011).  Recent evidence suggests that 
sites with high passerine survival and reproduction (i.e., putative sources) can be identified using 
such point count models (e.g., Betts et al. 2008).  These methods are thus increasingly appealing 
for conservation biologists and landscape managers given the costs associated with collecting 
detailed demographic data (Hurme et al. 2008; Rota et al. 2009).  However, no studies have directly 
tested the predictions of dynamic N-mixture models in relation to either comprehensive 
demographic data or to survival and reproductive index data collected from MAPS. 
 To effectively manage natural populations, demographic data from source and sink sites 
must also be linked with information about the distribution and size of habitat patches in the 
landscape. A number of studies have documented the effect of habitat amount, patch size, and 
connectivity on the viability of local populations in fragmented landscapes (e.g., Robinson et al. 
1995; Hoover et al. 1995; Donovan et al. 1995). Specifically, recent work on DoD installations in 
the Midwest indicates that forest amount is often a good predictor of demographic performance 
measures for a number of Neotropical migrant birds (Nott & Morris 2007). Despite some empirical 
work we still lack an understanding of which aspect of landscape structure are most critical to 
avian population persistence, and how habitat quality shapes the per capita contribution of local 
populations to regional metapopulations. 
 
 

Methods 
Here, we outline the estimation of population growth ( ) for the three avian sampling 

techniques that vary in unit effort and data resolution. We define sources as sites that have positive 
population growth ( >1) and sinks as sites in demographic deficit ( <1). Importantly, these 
designations cannot explicitly account for the role of immigration such that a site may be 
designated as a source, but the vital rates would not be sufficient for site persistence in the absence 
of immigration. As such, we review the importance of self-recruitment rate and its drivers to best 
understand both site persistence and the relative contributions that each subpopulation makes to 
regional population dynamics. 
 
Point-Count N-mixture Models 

To estimate plot-specific population growth rates from the point count data (λPC), we used 
all information collected at all 683 point count stations.  Prior to modeling, we removed all 
detections of individuals that were recorded greater than 50 m from any point count station, and 
counted the remaining Wood Thrush detections during each 10 minute sample visit.  Results from 
our tests of closure violations in Chapter 1 indicated that it is reasonable to assume superpopulation 
closure within a single breeding season for Wood Thrush, and thus we fit a dynamic N-mixture 
model to the dataset (Dail & Madsen 2011).  All repeated visits to a site within a breeding season 
were considered part of the same primary period, and visits within a breeding season were treated 
as secondary periods.  The model was fit using the pcountOpen() function in the R package 
“unmarked.”  Superpopulation size at site i during primary period t (Nit) was assumed to follow a 
negative binomial distribution, and using the dynamics = “trend” option, we specified that E(Nit) 
= E(Nit-1)*λi.  Under this model specification, λi represents the estimated inter-annual growth rate 
at site i.  We included time of day and Julian date as covariates for detection probability in the 
model, and demographic plot as a covariate for both initial site abundance (Ni1), and growth rate 
(λi).  The 490 point count stations that were not located on a demographic plot were lumped into 
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a single category.  We report plot-specific estimated growth rate values for comparison with the 
other data collection techniques. 

 
MAPS Population Growth Rate Estimation 

We applied Pradel reverse-time capture-mark-recapture models (Pradel, 1996) to MAPS 
data to estimate time-constant annual population growth rate (λMAPS) at each station. We 
implemented the model using the ‘λ and ’ parameterization in program MARK (White & 
Burnham, 1999). We ran program MARK in R (R Core Team, 2015) using the RMark package 
(Laake, 2013). We included fixed plot (station) effects for models of both apparent survival ( ) 
and population growth ( ). As for our CJS models, we modeled recapture probability (p) as a logit-
linear function of a station-specific covariate representing the mean number of times individuals 
were captured at the station per season (Saracco, Desante, & Kaschube, 2008).  
 
Intensive Demographic Population Growth Rate 

Estimates of population growth for the intensive demographic data (λID) were derived from 
the integrated population modeling framework (see Appendix A for parameter estimate details). 
For each plot, annual population growth rates were approximated as: 
= ௣,௧ߣ  ݊௣,௧݊ ௣,௧ିଵ =  ௣݂,௧ିଵ ߶௣,௧ିଵ௝ + ߶௣,௧ିଵ஺ௗ + ߱௣,௧ିଵ 
 

and the total population growth rate of each plot across all four years was measured as the 
geometric mean of the annual rates (Pulliam 1996): 
= ௣ߣ   ൥ෑ ௣,௧ଷߣ

௧ୀଵ ൩ଵ/ଷ
 

 

The above equations represent the total contribution of all three classes of individuals (local 
recruits, surviving adults, and immigrants) to local population growth. In some cases, populations 
that cannot support themselves through local recruitment processes may experience positive 
populations growth (  > 1) due to high immigration rates. To measure the ability of each plot to 
maintain itself through retention and self-recruitment only, known as the self-recruitment rate (Rp 

, Runge et al. 2006), we also calculated: 
 ܴ௣,௧ =  ௣݂,௧ିଵ ߶௣,௧ିଵ௝ + ߶௣,௧ିଵ஺ௗ  
 
Note that Rp cannot be calculated from either point count or MAPS data because it is not possible 
to know which captured or recorded individuals were born on the plot itself, and which immigrated 
there. We examined the correlation among population growth estimates using simple Pearson 
correlation coefficients. 
 
Local and Landscape Predictors of Population Growth 
 To examine the predictors of population growth we built competing models with self-
recruitment rate (R) as our response variable and various combinations of local and landscape 
variables as predictors. We specifically chose self-recruitment as our response variable because it 
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measures the key local recruitment processes that contribute to stable population size. Moreover, 
sites that have self-recruitment rate > 1 are important to regional population dynamics as they 
make measureable contributions to the focal subpopulation (Donacaster et al. 1997). We used two 
structural elements of local vegetation (shrub cover and the number of trees with DBH greater than 
30), as well as two landscape variables (patch size and amount of forest cover within 2 km) as 
fixed effects and plot as a random effect. We used only a subset of local vegetation characteristics 
because of collinearity among predictors and because previous work suggested that both shrub 
cover and stand age were important habitat selection features for Wood Thrush (Evans et al. 2011). 
We assessed model suitability by comparing Akaike’s information criterion values corrected for 
small sample sizes (AICc), and model weights (wi). We iteratively dropped fixed effects and 
compared models to a null model with only random effects. Those models with ≤ 2 ΔAICc were 
considered equally supported (Burnham and Anderson 2002; Bolker et al. 2009). Because the 
response and predictor variables were on vastly different scales (e.g., R: 0-1; Count of trees: 492-
5146) we log transformed response variables to make beta coefficients interpretable. Data were 
analyzed using the lmer function from the lme4 (Bates et al. 2014) and bbmle (Bolker et al. 2014) 
packages available in the statistical program R version 3.0.2 (R Core Team 2013). 
 

Results and Discussion 
 
Comparing Population Growth Estimates 
 Estimates of population growth showed the strongest concordance among study sites at the 
Big Oaks National Wildlife Refuge, all of which were categorized as sources ( >1) using all three 
methods (Table 4.1; Fig. 4.1). In contrast, Indiana Department of Natural Resource sites which are 
variable sized forest fragments and Crane sites and are managed via selective harvest, showed 
substantially less agreement in source vs. sink designation. These results suggest that sources may 
be intrinsically easier to identify using methodologically diverse techniques. This is likely because 
high-quality source habitats are demographically stable through time with less variance in the key 
vital rates that contribute to population growth (see Chapter 3). In contrast, low-quality sink 
habitats have smaller overall population sizes and therefore are more likely to experience 
significantly more demographic stochasticity causing temporal switches between source and sink. 
Higher variance in λ would be harder to quantify with techniques that do not account for all vital 
rates that can drive population dynamics. Here, we have presented cumulative estimates of  which 
undoubtedly tell us about a population trend through time. Temporal variation in demography may 
be a relevant factor depending upon the management scheme. Although MAPS and point-count 
estimates of population growth can’t recover these long-term trends, they perform better when 
looking at finer temporal scale estimates population change (see future directions). 
 
Table 4.1 Population growth estimates derived from methodologically diverse avian sampling 
techniques. Data was collected from 2011 to 2014 at two DoD installations (Big Oaks National 
Wildlife Refuge, BONWR and Crane Naval Facility, CRANE) and at surrounding properties 
managed by Indiana Department of Natural Resources. Plots represent a gradient in habitat quality 
as well as variation in patch size and regional forest connectivity. 
Region Plot PC MAPS ID R 
BONWR AR27 1.07 1.03 1.18 1.22 
BONWR AR41 1.48 1.06 1.34 1.09 
BONWR AR07 1.13 1.02 1.14 1.02 
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BONWR AR58 1.06 1.05 1.05 0.94 
IDNR MCCR 0.89 1.12 1.14 1.07 
IDNR MART 0.86 0.97 1.05 0.89 
IDNR OWEN 0.87 1.04 0.9 0.77 
IDNR SPMI 0.84 1.16 0.91 0.88 
CRANE EABO 1.06 1.19 1.03 0.75 
CRANE FIRS 0.65 0.97 0.99 0.62 
CRANE SEED 0.69 0.59 1.23 0.6 
CRANE SULP 0.73 1.06 1.05 0.9 

In examining the concordance among estimates of lambda derived from each approach, we 
found substantial evidence for a moderately strong correlation between PC and ID (Pearson’s r = 
0.54, t = 2.07, df= 10, p = 0.06). In contrast, we found little evidence for significant correlation 
between estimates derived from MAPS data and the other two approaches (λMAPS- λID, r = -0.37, t 
= -1.26, df= 10, p = 0.24; λMAPS- λPC, r = 0.37, t = 1.27, df= 10, p = 0.23). Despite the weak 
correlation point-counts and intensive demography data often differently categorized plots as 
sources and/or sinks which could create a problem for population monitoring and management. 
Failure to find strong concordance among these approaches could result from differences in the 
sensitivity of each approach to detect key changes in demographic vital rates and/ or these methods 
may measure processes from different spatial scales. 

Understanding the spatial 
scale from which demographic data 
are sourced is key to interpreting the 
similarities and differences between λ 
estimates produced by the various 
sampling approaches. The intensive 
demographic estimates are generated 
as a function of locally estimated 
fecundity, recruitment, adult survival, 
and immigration rates.  Moreover, this 
is the first demographic model that 
has incorporated vital rates across the 
annual cycle. The error contained in 
each of these demographic estimates 
is jointly propagated to the λ estimate 
using the Bayesian integrated 
population modeling framework. 
Nonetheless, all estimates are 
generated from nests and individuals 
that are known to have originated in 

the plot of interest, making these estimates the most reliable information obtainable about local 
growth rates.  To our knowledge, this is the most comprehensive and data rich avian population 
model ever built making it as close to demographic truth as current avian sampling and analytical 
methods can approximate. On the other hand, both MAPS and point count data utilize capture-
recapture histories and/or count data to generate growth estimates.  While the former approach 
contains more detailed information in the form of uniquely identified individuals, both suffer from 

Figure 4.1 A comparison of population growth estimates (points) and 95% 
confidence intervals (error bars) for point-count, MAPS and demographic 
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a scaling issue; that is, it is unclear what spatial area is being sampled by MAPS and point count 
data. 

For instance, MAPS data rely on a ratio of adults to juveniles to produce productivity 
estimates (see Chapter 2), but there is no guarantee that an adult individual captured in a given 
mist net is locally territorial, or that a captured juvenile was locally recruited.  Floating birds 
(Penteriani et al. 2011) can frequently make up large portions of an adult population, and often do 
not have any home range, per se, such that the location in which they are captured may be random 
with respect to their origin or where they eventually breed.  In addition, mean post-fledging 
dispersal distances for Wood Thrush range from 1.5 km in Virginia (Vega Rivera et al. 1998) to 
2.08 km in Missouri (Anders et al. 1998), and may be as large as 5.3 km.  Because juvenile Wood 
Thrush fledged as early as the first week of June in our study region, the original capture locations 
for many young birds may more accurately reflect dispersal territory preferences, rather than local 
productivity.  Finally, independent juveniles disperse to habitats with dense understories (e.g., 
early to mid-successional or riparian forests) that provide both abundant food and protection from 
predators (Anders et al. 1998, Fink 2003). These differences in habitat preference between 
dispersing juveniles and adults could produce misleading ratios as young birds move out of natal 
source habitats with a large number of breeders and into habitats that are dominated by early 
successional vegetation with far fewer breeding adults. As a result, λ estimates stemming from the 
MAPS protocol may represent information from a much broader spatial area than what was 
actually sampled. 

 The λ estimates from the point 
count data are based on even 
coarser information than that 
used in the MAPS approach.  
Here, population growth rates 
roughly represent a simple ratio 
of site abundance in year t to site 
abundance in year t-1.  While a 
“site” was defined as a 50 m 
radius circle, this approach still 
suffers from the fact that floater 
adults could be detected during a 
point count even though they do 
not regularly utilize that space.  
Further, as demonstrated in 
Chapter 1, territories of 
individuals may frequently only 
partly overlap the sampling 
space, making estimation of the 
actual area sampled impossible 
(Nichols et al. 2009).  On the 
other hand, juvenile birds are 
very rarely detected during point 
count surveys due to their cryptic 
nature, and thus λPC estimates are 

likely free of any biases stemming from dispersing hatch-year birds.  In fact, greater than 80% of 
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Figure 4.2. The number of large trees was the best predictor of Wood thrush 
demographic performance in southern Indiana from 2011 to 2104. Points 
represent demographic performance of the 12 study populations and the line is 
the model prediction from our GLMM ( BAG30 = 0.21  0.05). Large trees were also 
a good proxy for other key habitat variables including understory shrub density, 
vertical structure and leaf litter depth all of which are important for Wood thrush 
performance. 
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our Wood Thrush detections during point count sampling were of singing adult males.  Given that 
λID estimates were generated from a female-only population model, at the correspondence between 
λID and λPC estimates (Table 4.1; Fig. 4.1) is surprising, but potentially important.  We suspect 
these results indicate that point counts are relatively good indicators of local abundance, and 
changes in local abundance, even if density cannot be accurately calculated.  That is, even though 
the effective area sampled by a single point count cannot be accurately estimated (unless repeated 
samples are conducted extremely close in time; see Chapter 1), the variability in sample area would 
be on par with the range in territory dimensions (0.08 – 4 ha for Wood Thrush; Evans et al. 2011).  
In other words, the effective radius of our point counts was likely somewhere between 50 and 250 
m (though validation of this educated guess is left to future work).  Therefore, the extent of most 
of our point count samples were likely contained completely within the boundaries of the plots 
outlined for demographic sampling, and effectively represented the same area. 

Local and Landscape Predictors 
of Population Growth 
 The only model of self-
recruitment rate that had 
substantial support (i.e., ΔAIC < 2; 
Burnham & Anderson 2002) 
contained a single explanatory 
variable, number of trees with 
DBH > 30 cm.  Importantly, many 
of the local scale habitat features 
are collinear such that habitats with 
a high number of large trees are 
also characterized by high shrub 
density, complex vertical structure 
(i.e., sub-canopy) and high leaf 
litter depth (see Table 1.4) all of 
which are likely important for 
Wood thrush habitat selection as 
well as productivity. In contrast, 
we found little to no support for 
landscape level variables such as 

patch size and/ or forest cover within 2 km. The lack of support for models with landscape scale 
variables indicates that managers may be able to provide high productivity Wood Thrush habitat 
using simple fine scale manipulations.  Simply encouraging growth and retention of large trees 
will create sites that are both high quality (Fig. 4.2). These management practices might also 
require minimizing selective timber harvest which impacts both overstory and understory forest 
structure. In addition to having a positive demographic impact, management practices that 
encourage retention of large trees will also be preferentially selected by Wood thrush (Fig. 4.3) 
thereby increasing overall occupancy. Increasing regional occupancy will undoubtedly buffer and 
increase the likelihood of persistence for local and regional populations. 

Although these models of local productivity underscore the importance of large trees, and 
more broadly local vegetation structure, we do not feel our results rule out the importance of 
landscape scale features. Other results presented here in this report show that regional processes, 

Figure 4.3. A plot of predicted Wood Thrush occupancy at the point count 
station scale as a function of the number of trees with DBH > 30 cm. 
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specifically immigration, can play an essential role in converting sink habitats into sources. The 
MAPS results show that region forest cover with 2km was a significant predictor of local 
productivity. As discussed above MAPS reproductive index may measure larger spatial scale 
productivity and these processes may buffer populations. Moreover, the results from our integrated 
population model show clearly that immigration processes are important across a gradient of 
habitat quality. Ultimately, our results show clearly that local land management can have a positive 
demographic impact, yet land managers must consider regional land use especially when 
considering the rescue of populations in demographic deficit. 
 
Table 4.2. A comparison of models developed to test the effects of local and landscape level 
variables on self-recruitment rate.  Local variables considered in model development were number 
of trees with DBH greater than 30 cm (BAG30) and shrub cover (SC), while landscape variables 
included patch size (Patch) and amount of forest cover within 2 km. 

 
Model AICc logLik wi 
BAG30 0.0 4.0 0.66 
Null 2.3 1.9 0.21 
BAG30+ForCov+Patch 5.0 3.5 0.06 
BAG30+Patch 6.2 1.9 0.03 
SC+BAG30+ForCov+Patch 7.0 3.5 0.02 
Patch 8.0 0.0 0.01 
ForCov+Patch 9.0 0.5 0.00 

  
 

Conclusions and Implications for Future Research 
 Our results definitively show that the point count and intensive demographic approaches 
we demonstrated provide very similar estimates of λ. The MAPS protocol, on the other hand, 
produced estimates that were not significantly, and in some cases not positively, correlated with 
either the point count or demographic estimates.  As mentioned, we hypothesize that these results 
are indicative of similarities in spatial areas sampled by point counts and demographic monitoring, 
while the MAPS protocol samples an area that is geographically much larger.  Validation of this 
hypothesis is beyond the scope of this study, but future work should investigate the source of this 
discrepancy.  Further, despite the correlation between point count and demographic λ estimates, in 
4 of 12 cases point counts identified sites as having a negative population trajectory when the 
“true” estimates from demographic monitoring indicated positive growth.  Point count 
methodology may thus be less useful as a classification tool than it is for ranking population 
trajectories of multiple sites relative to one another.  In addition, our results technically only apply 
to a single species in a single geographic region, and future studies should investigate whether 
point counts can be used universally as a reasonable substitute for demographic monitoring.  For 
instance, we may not expect to find similar correspondence between point count and demographic 
estimates of λ for species with larger home ranges, or more cryptic vocalization tendencies. 
 Ultimately, RP, the self-recruitment rate, is probably the most reliable indicator of whether 
a site could be considered a source or a sink.  The λ estimates generated by any of the three 
approaches we took are heavily influenced by immigration rate, and thus λ estimates could be 
positive even if the site is incapable of sustaining itself.  Ecologists have long recognized that 
density, or changes in density are not necessarily indicative of habitat quality (Van Horne 1983), 
and in this respect, there is no substitute for intensive demographic monitoring if local population 
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management is the goal.  If, however, interest is simply in spatial variation in population growth 
rate, repeated point count sampling over multiple years may provide reasonable approximations at 
substantially reduced cost, and over much broader spatial scales. As mentioned above, future 
research will investigate if temporally refined estimates of lambda produced from point-count data 
more reliably recover the demographic performance of a population. Finally, it is important to 
highlight that both lower unit cost effort and data resolution approaches (count and MAPS) do a 
good job of categorizing source populations in high quality habitats. 
 Our results indicate that encouraging Wood Thrush population growth is merely a matter 
of growing and maintaining large trees.  Fortunately, the factors that attract breeding Wood Thrush 
are the same as those that result in positive population growth, eliminating concern about 
ecological traps (e.g., Kristan 2003).  These results are emphasized by the fact that the BONWR 
sites in our study that had both the greatest population growth, and the least amount of local 
vegetation management.  Sites where selective harvesting of large trees was common (e.g., Crane 
plots) tended to have low or negative population growth.  This commentary is not intended as a 
criticism of the forest management practices on Crane, but rather as a simple statement of fact 
about how they likely impact local Wood Thrush populations. We recognize that selective 
harvesting is almost certain to benefit other avian and mammalian species, even if it does not 
directly benefit Wood Thrush. It should also be noted that while the count of large trees is the 
single greatest predictor of self-recruitment rate, this does not mean that landscape features have 
no influence on Wood Thrush population persistence.  Technically, a self-sustaining site may not 
be a source at all if surplus individuals are not able to disperse to and colonize other habitat patches 
(Pulliam 1988).  In this sense, while landscape configuration may have little influence on local 
growth rate, it may have substantial influence on connectivity of high and low quality areas.   
Understanding how landscape configuration influences bird dispersal and mobility was beyond the 
scope of this project.  We have, however, recently begun a series of translocation experiments on 
Crane and surrounding areas to investigate how landscape features influence the permeability of 
the landscape for Wood Thrush and other species.  To date, no studies have parameterized 
predictive models of population persistence with real demographic data to provide guidance on 
optimal management strategies (Lloyd et al. 2005).  In the future, we intend to combine our newly 
gathered dispersal information with the data gathered in this report to produce a realistic 
individual-based computer model that will allow us to categorize source-sink dynamics at regional 
scales and make predictions about how the ratio of sources and sinks in the landscape determines 
population viability. 
 In this report, we have provided a wealth of information about Wood thrush population 
dynamics, yet management decisions often need to be made based on competing demands and 
must take into consideration multiple taxonomic groups. Although managing suites of species can 
be difficult, we believe our results provide some key insight into the ecological processes that 
influence the distribution and population dynamics for birds on DoD installations in Southern 
Indiana and more broadly across the eastern deciduous forest region. In Chapter 1 and here in 
Chapter 4 we have shown that point-counts and occupancy modeling are a useful tool for 
characterizing patterns of avian spatial distribution and monitoring stable populations. Point counts 
can also provide information about the whole community of birds on DoD installations and 
therefore increase the ability of managers to make management decisions that maximize 
biodiversity. Examining the predictors of occupancy from Chapter 1 shows that species respond 
to different aspects of local habitat and landscape configuration. For example, occupancy of edge 
species is maximized when forest patches are small and have sufficient successional edge habitat 
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available for breeding. In contrast, the occupancy of forest interior species is maximized by 
increasing patch size, but not necessarily overall forest cover. As such, maximizing avian diversity 
on installations will require managers to maintain a heterogeneous configuration of patch sizes as 
well as compositional makeup. Importantly, our results also suggest that landscape features largely 
act as a coarse-scale filter that determines the presence-absence of species and to some extent their 
abundance. Although count data are less precise when it comes to understanding species-specific 
demography, they can be used as a heuristic tool when both occupancy and demographic data are 
available for a single species. Below we outline how patterns of occupancy and temporal changes 
in abundance can inform population dynamics for species with similar habitat requirements. 
 Interior forest specialist species have shown among the most dramatic population declines 
over the last decade and as a result are ranked as the highest conservation concern (NABCI 2016). 
In particular, Wood thrush, Kentucky warbler and Acadian flycatcher are all interior forest 
specialists that have significantly negative trends (-1.13, -0.92, -0.45, respectively) in the central 
hardwood region based on long-term Breeding Bird Survey count data. As such, all three are 
recognized as species of concern by DoD. Our results suggest these three species, as well as most 
others grouped within the interior community, require large forest patches. Moreover, the 
occupancy results also show that these species respond to fine scale habitat features (Table 1.13) 
whereby occupancy increases in habitats with large trees, high shrub cover and vertical foliage 
density. In Chapter 3 and 4 we found that key Wood thrush demographic vital rates and self-
recruitment were influenced by fine-scale habitat variables (Fig. 3.4 & Table 4.2). Congruence 
between the occupancy results and the key drivers of self-recruitment rate for Wood thrush suggest 
that count data can potentially be an accurate indicator of demographic performance for a broader 
suite of interior forest birds. These patterns further suggest that Wood thrush is a good umbrella 
species upon which to make management decisions for this group of species that is of conservation 
concern. Although, we do not have detailed demographic for all species, MAPS monitoring 
provides us with apparent breeding season survival, which is one of the top three contributors to 
variance in population growth (see Chapter 3). Future work with MAPS data will investigate the 
key predictors of survival across suites of species and then look for congruence with the drivers of 
occupancy. This approach may be able to find suites of species that would benefit from similar 
management strategies like the interior species highlighted above. Ultimately management 
decisions will be both scale and objective dependent. Our occupancy data highlight how 
installations can maximize avian diversity through landscape composition and configuration and 
our demographic data suggest how fine scale habitat can be managed to ensure population 
persistence. These strategies may not be mutually exclusive, but the complexity and diversity of 
species of breeding birds monitored suggested that no single catch-all management solution is 
likely to exist. As an addendum to our report we are providing DoD land managers with a user’s 
guide to begin thinking strategically about how to structure monitoring programs to meet specific 
management objectives. 
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