

Recall Table B-23. Incremental Sampling Methodology (ISM) Soil Preparation for Large Volume (1 kg or greater) Samples.
 Removed from QSM- "Surrogates must be spiked prior to any preparation steps performed such as drying, grinding, sieving, or extraction.
 EDQW completed PAH surrogate efficacy study in 2020

Phase1 Inter-Laboratory Comparison
 In almost all instances, there were significant differences in percent recovery among treatment groups within a given laboratory (ANOVA)
 Only no significant difference in recovery in benz[a]anthracene for Lab C
 Treatment 4 (5 x 1 min milling, 16-24 hr drying) tended to have lowest analyte recovery
 Treatments 1 (no milling/drying) and 3 (no milling, 16-24 hr drying) tended to have highest analyte recovery

• There was no detection of carry-over contamination in the grinding blanks

ntal Moni

oring & Data Quality Work

Joint Department of Energy and Department of Defense 2023 Environm

Table B-30, P	AH in Soil (Sample Processing Re	quirements for Incremental Sampling Methodology)	Corrective Action and
QC Check	Minimum Frequency	Acceptance Criteria	Qualification Criteria
Grinding Cycle	When sample grinding is performed using a puck mill, each field sample.	When a puck mill is used to grind the samples, grinding cycles shall not exceed 60 seconds and shall be followed by a 2- minute or longer cool down period between the grind cycles. Other grinding apparatus may be used.	Correct problem and regrepage samples. Qualification of data is not appropriate.
Srinding Blank For batch preparation, the Srinding Blank may serve as the Method Blank.	When sample grinding is performed, a grinding bank is required. One per peparationy bath using Ottawa sam using Ottawa sail. A Grinding Bank shall be performed immediately Bank shall be performed immediately after a ustorned-terrifed sample with suspected high target analyte concentration or after the LCS.	No analytiss detected > 16 LOQ or > 11/0 [®] the amount measured in the associated sample(s) whichever is greater.	Correct problem. If required, rggrggage and analyze Grinding Blank and al QC samples and field samples processed with the combinished bank if sufficient sample material la available. If the samples cannot be (sprggang) and analyzed, apply quiller to specific appl(s) in a samples in the associated preparatory batch and exhain in the case analyse.

10010 0.00.17	kh in soil (sample Processing R	equirements for incremental sampling methodology)	
QC Check	Minimum Frequency	Acceptance Criteria	Qualification Criteria
Laboratory Control Sample (LCS) A laboratory- prepared solid LCS may be used. The fortification shall be performed price to any preparation steps. The LCS shall be prepared and analyzed in exactly the same exactly the samples, including all drying and grinding steps.	Use per preparation y starts. Shah contain all surrogates and all analytics to be reported. Subscription of the subscription of the (SRM) had is used for a LCS can be ground as a single batch and subsampled repeatedly as long as the SRM is within expiration date.	Veroleda acceptance oftena are no central. I customer developed acceptance oftena, en unatable, una tuboratory- developed acceptance oftena.	Comes processin. Irrequired, regregation and analyzes the LCS and a affected QC samples and Held samples in the associated preparatory batch for hister analysis sufficient sample national as auxiliable. For But the samples cannot be regregated and analyzed, reply qualifier to specific aga/g(s) in analyzed, reply qualifier to specific aga/g(s) in analyzed, reply qualifier to specific aga/g(s) in batch and explain in the case narrative.

QC Check	Minimum Frequency	Acceptance Criteria	Corrective Action and
Matrix Spike		Same as the LCS accentance criteria	Qualification Criteria
(MS) Spiking is performed after ISM preparation prior to extraction.	material is provided.		criteria, the data shall be evaluated to determine the source(s) of failure is analytical error. If so, regrogage and analyze the MS stufficient angum material is available. Otherwise, report data with qualification. Quality specific anglight(s) in the parent sample if results are not within acceptance oriteria and explain in the case narrative.

Guidelines Document Overview

- · Addresses newly developed, adopted, or modified chemical and radiochemical methods
- Document provides: - An overview of the general principles and important areas of consideration for method validation including method performance characteristics
 - Lists and links to more detailed method validation resources (e.g., Agency documents, international standards, other guidance documents, etc.)
- Builds on concepts developed by the EPA Regional Laboratories and other parts of the Agency Introduces 3 new concepts

7

New Concepts

 Document introduces 3 new concepts to promote consistent method development and communication of validation results: • Method Life Cycle Validation Descriptor Method Validation Summary

8

New Concept #2: Validation Design
 Standardized descriptor to concisely convey extent of validation performed
 Based on number of participating laboratories and different matrices
 Noted as [al,bM] where "a" is number of laboratories (L) and "b" is the number of different matrices (M)
 For example, Validation Design [3L,2M] conveys that 3 laboratories and 2 matrices were included in the method validation

10

Additional Information

- In main document:
 - Guidance on interlaboratory validation study designs
 - Suggested resources for use in understanding and implementing statistical assessment of method validation results
- In appendices:
 - Discussion of method validation matrix variability considerations, with examples of matrices used/suggested from individual EPA offices
 - Compilation of detection and quantitation limit definitions

14

Method Validation Summary

- Designed to be placed at the front/introduction to the full Method Validation Report
- Does **NOT** replace the full Method Validation Report, which should be prepared in accordance with expectations and guidelines/protocols of individual offices and/or programs

16

Benefits to Using the New Concepts

- Method Lifecycle Promotes a consistent approach to link and integrate method activities from identifying needs to revision/retirement
- Validation Descriptor [aL,bM] Provides "one glance" overview of the extent of validation
- Method Validation Summary Concisely communicates Validation Study information in a consistent format

New Document on Method Terms

- Wondered about what terms like "regulated", "promulgated", etc. mean with regard to EPA Methods?
- Never Fear the document "Terms Used to Describe the Standing of US EPA Methods" is here!
- Hot off the press or rather cold on the Internet at:
 <u>"Terms Used to Describe the Standing of U.S. EPA Methods"</u>

20

Document Purpose

- Compile terms (e.g., regulatory, promulgated, approved) used by EPA to describe/designate the standing of its methods
- Promote a better understanding of these terms for both EPA personnel and external parties (e.g., states, laboratories and testing organizations, etc.).

Note: This document does not include terms that describe technical characteristics of a method (e.g., detection limits).

21

Me	Method Validation Summary for SW-846 Methods 3512 and 8327					
D	Method Performance Characteristic	Description and/or Results				
1	Bias/Trueness	Average (median) recovery across eight laboratories ranged from 80-118% at 95% confidence for every target analyte except 6:2 FTS in each matrix type and prepared concentration level.				
2	Detection Capability and Quantification Capability	Lower limits of quantitation (LLOQs) across eight laboratories were verified at nominal concentrations of 10-20 ng/L at 95% confidence for all target analytes except for 8:2 FTS (40 ng/L) and 6:2 FTS (160 ng/L).				
3	Instrument Calibration	Target analytes were calibrated by external standard using weighted regression.				
4	Measurement Uncertainty	Not Applicable				
5	Precision	Relative standard deviation (RSD) of measured concentrations in spiked samples was <50% in every matrix and spike level combination in each laboratory except for PFOS in one laboratory/matrix/spike level and 6:2 FTS in three laboratory/matrix/spike level combinations.				

Jan Barris	Data V	anuation	Ouldelines	Contraction of the second
Module	Topic	Published	Status Notes	
General	Overview	05 Nov 2019		
1	GC/MS	18 May 2020	Updating currently	
2	ICP-OES	18 May 2020		
3	PFAS B-15	07 May 2020	Will not be updated	
4	GC	11 Mar 2021		
5	ICP-MS	09 Nov 2022		
6	PFAS 1633	01 Nov 2022	Will be updated after final 1633	
Revised table – Publis – Applie	for Sample Qualifica hed 2/9/2022 s to all modules (rep	ation in the Presend laces table in 1-4, i	e of Blank Contamination	
loint Departm	ent of Energy and Departmer	nt of Defense 2023 Environ	mental Monitoring & Data Quality Workshop	

Data Review Comparison Verification Validation Ensure compliance with Adequate quality and Purpose Ensure presence underlying specifications (e.g., SOPs, Methods, QSM) quantity for decisions and completeness (DQOs, PARCCS) Responsible Party Varies, usually 3rd Party* Validators Entire Project contractor Team Field records and Laboratory data (should All project records Covers have field data, but not always included) laboratory data and data Timeline Following collection Following data receipt or End of sampling laboratory report event, prior to issuance decision making rov and De

Our F	Former Incinerator TRIP	÷
Soils: Grayish-yellow to Average of 25%	yellowish-orange sand to silty sand coarse sand and gravel	•
Previous investigations:	Lead-contaminated soil throughout investigation and Lead contamination extending to a depth of 10'	ea
Prescreening of surface concentrations of lead in	soil in current investigation area with a field XRF indic n excess of 400 mg/kg.	ates
Current land use: Ope	en recreational	
Future land use: Res	sidential	
EPA Regional Screening	I Limit for Lead in Residential Soil: 400 mg/kg	
Joint Department of Energy and D	apartment of Defense 2023 Environmental Monitoring & Data Quality Workshop	19

1. STATE THE PROBLEM

Conceptual Site Model Foundation Building a detailed Conceptual Site Model (CSM) Consolidation of historical site knowledge . Details current site conditions / uses Documents knowns Reveals Data Gaps / unknowns PRELIMINARY CONCEPTUAL SITE MODEL The whole purpose of the investigation. If we knew everything, we'd just decide! z U.S. EW REGION VII IN COOPERATION WIT om: EPA 542-F-11-011 E se of Project Life Cycle C CSM Figure Joint Department of Energy and Department of Defense 2023 Environmental Monitoring & Data Quality Workshop

	Start with Formulating a Question	Ser
For	nulate the Problem into study question(s) based on the type of problem:	-
<u>De</u> • [• [•	actision problems Does the contaminant concentration in ground water exceed acceptable levels? Does the contaminant pose a human health or ecological risk? s the contaminant concentration above background levels?	
<u>Es</u> • \ • \	stimation problems What is the distribution of pollutant air concentration over space and time? What is the largest concentration consistent with background? What is an upper bound estimate of the site mean?	
Join	I Department of Energy and Department of Defense 2023 Environmental Monitoring & Data Quality Workshop	-

Outline Alternative Actions Consider a range of potential answers to the study question(s). For each possible answer, identify a logical course of action to take in response. Finding Logical Course of Action No issue identified • No Action · Issue poses immediate threat Emergency Response Action • Issue poses imminent threat • Time-Critical Response Action · Issue poses longer-term threat **Remedial Action** Joint Department of Energy and Department of Defense 2023 Environmental Monitoring & Data Quality Workshop 27

2. Identify the Decision(s) Develop the decision statement (template below): Determine whether [unknown environmental issue] requires [taking one or more actions]. Determine whether lead contamination in surface and subsurface soils at the Former Incinerator and Landfill poses an unacceptable risk to human health or the environment that requires remediation. Decision Statement(s) IARD DECISION Uecielon Statement(S) for our Incinerator Trip Determine whether lead contamination in subsurface soils at the Former Incinerator and Landfill presents a source of groundwater contamination that requires remediation. ant of Energy and Department of Defense 2023 Environmental Monitoring & Data Quality Workshop Joint D 28

A. Define Study Boundaries
 Activities to be completed:
 Offine the target population
 Define the target population
 Determine the spatial and temporal
 boundaries
 Identify practical constraints
 Define the scale of inference
 (i.e., decision unit or scale of estimation)

<section-header><section-header><section-header><section-header><text><text><text><text>

	H₀ True	H ₀ False
Reject H ₀	Type I Error (α) or False Positive	Correct Decision
Do not reject H ₀	Correct Decision	Type II Error (β) Or False Negative

Incremental Sampling Methodology
 Used when DQOs are in terms of population means for select contaminants (e.g., explosives, metals, PAHs, & high concentration VOCs)
 Normalizes distribution → Decreases n & simplifies calculations
 Decreases variability → Decreases uncertainty for fixed n
 Reduces non-detects → Simplifies calculations & reduces uncertainty

 Neferences

 EPA G4 Guidance on Systematic Planning Using the Data Quality Objectives Process https://www.epa.gov/quality/guidance-systematic-planning-using-data-quality-objectives-process-epa-qaq.

 1. FRC Incremental Sampling Methodology Update https://sm2.itroweb.org/

 3. Visual Sampling Plans Methodology Update https://smp.nit.gow/

 4. Visual Sampling Plans freeware software from the DOE Pacific Northwest National Lab https://www.epa.gov/fedfac/uniform-federal-policy-quality-assurance-project-plans-training-materials

 0. Uniform Federal Policy for Quality Assurance Project Plans, Munitions Response QAPP Toolkit https://www.epa.gov/fedfac/uniform-federal-policy-quality-assurance-project-plans-munitions-response-gapatoolkit

 Joint Department of Energy and Department of Defense 2023 Environmental Monitoring & Data Quality Workshop
 76

	Verification	Validation	Usability Assessment	
Purpose	Ensure presence and completeness	Ensure compliance with underlying specifications (e.g., SOPs, Methods, QSM)	Adequate quality and quantity for decisions (DQOs, PARCCS)	
Responsible Party	Varies, usually contractor	3 rd Party* Validators	Entire Project Team	
Covers	Field records and laboratory data	Laboratory data	All project records and data	
Timeline	Following collection	Following laboratory report issuance	End of sampling event, prior to decision making	

 Step 3: Document DUA, Update the CSM, Apply Decision Rules, Draw Conclusions

 Draw Conclusions:

 Must the soil be remediated?

 What questions remain and what data do we need to solve them?

 Discrete to write the Down of the data and down of the data in a scientifically and legally defensible manner.

 Consider both conclusions arising from the analytical data and those which arise from secondary data.

	References – Process and Planning	
	Process and Planning	
	 IDQTF, UFP-QAPP Part 1: UFP-QAPP Manual, March 2005 	
	 IDQTF, UEP-QAPP Optimized UEP-QAPP Worksheets, March 2012 	
	 IDQTF, UFP-QAPP Munitions Response QAPP Tookit Module 1: Remedial Investigation (RI)/ Feasibility Study (FS) Update 1, April 2020 	
	 IDQTF, UFP-QAPP Munitions Response QAP Toolkit Module 2: Remedial Action, March 2023 	
	Validation and Verification	
	 EPA Guidance on Environmental Data Verification and Data Validation, EPA QA/G-8, November 2002 	
	 EDQW, General Data Validation Guidelines, September 16, 2019 	
	 EDQW, Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GCMS, May 11, 2020 	
	 EDQW, Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES, May 11, 2020 	
	 EDQW, Data Validation Guidelines Module 3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15, May 1, 2020 	
	 EDQW, Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC, March 9, 2021 	
	 EDQW, Data Validation Guidelines Module 5: Data Validation Procedure for Metals by ICP-MS, November 09, 2022 	
	 EDQW, Data Validation Guidelines Module 6: Data Validation Procedure for Per- and Polyfluoroakyl Substances Analysis by QSM Table B-24, October 18, 2022 	
•	Usability	
	 EPA Guidance for Data Usability in Risk Assessment (Part A), April 1992 	
	 EPA QA/G-9 Guidance for Data Quality Assessment, July 2000 	
	 EPA QA/G-9R Data Quality Assessment: A Reviewer's Guide, February 2006 	
	 EPA QA/G-9S Data Quality Assessment: Statistical Methods for Practitioners, February 2006 	
•	Additional, service specific guidance is available	
-	Joint Department of Energy and Department of Defense 2023 Environmental Monitoring & Data Quality Workshop	

	Differences in Workflows	
• La	aboratory involved from beginning	
• dil	luted before running on instrument	
• no	p instrument went down	
• La	aboratory had approved documents ahead of time	
• Re	esults faster	
• Ca	an check for capacity to plan for instrument maintenance	
• No	o qualified data for holding time	
• La	aboratory should have subcontracted when they knew they would be down	
• Pro	roject knows what they want early	
Joi	int Department of Energy and Department of Defense 2023 Environmental Monitoring & Data Quality Workshop	4

Scenario: A p	project is analy	zing samp	le from	a muniti	ons site	tor n	netals		
Laboratory contracted, did not receive/	Samples	Analyte	85R	Sample Result (88)	Splae Added (SA)	5B	Control Linit M8	Q	Method
review QAPP	TOHOWING SOP	Antimony	11,7	0.76	20.0	55	89-120	3	6020
	•	Barlon Beryllinn Cadminn	200 17.5 18.5	210	2	-24	00-110 80-110 80-120	4	6020 6020 6020
Results show strange MS recoveries, no flags	Samples prepared and	Copper	107 2				0-120	4 D	6020
	analyzed	Nickel Selenium Silver Thellium The	37,5 7 15+1 4.51 4.76 21,3				80-120 80-120 80-120 80-120 80-120 80-120	3	6020 6020 6020 6020 6020 6020
Data validated, no flags or	DUA team uncertain on source of QC	Einc .	650 1	28600	20.0	-1	88-120	4	6020

