Implementation of Innovative In Situ Biotreatment Technology at NWIRP McGregor, Texas

Mike Perlmutter

Presentation Overview

- Site Description and History
- Areas of Environmental Concern
- Interim Stabilization Measures: Bench- and Pilot-Scale Evaluation
 - Groundwater
 - Soil
- Conclusions
Site History

- Operated for More Than 50 Years Under Various Owners and Tenants
 - United States Army, Navy, and Air Force

- Industrial Activities:
 - Weapons and Weapons Systems
 - Bombs, Missiles, and Explosives
 - Solid-fuel Rocket Propulsion Systems
 - Ammonium Perchlorate
Site History

Area M

- 750-acre Watershed
- Perchlorate Concentrations (ppb)
 - Surface Water: 5,600
 - Groundwater: 4 to 91,000
 - Springs: 22,000
- Drainage Pathway
 - Unnamed Tributary
 - Station Creek
 - Leon River/Lake Belton
Interim Stabilization Measures

- Why ISMs?
 - Migration of Perchlorate-Contaminated Groundwater and Surface Water from Site
 - Action Letter from the TNRCC (2/99) Requiring Migration Abatement

- Treatment Technology Evaluation
- Bench-Scale Studies
- Pilot-Scale Studies

Bench-Scale Groundwater Study: In Situ

- Objective: Evaluate In Situ Treatment of Perchlorate-Contaminated Groundwater
- Permeable Reactive Barrier (PRB)
- PRB Media Evaluation
 - Length of Acclimation Period
 - Reduction Effectiveness
 - Length of Effectiveness
 - Hydraulic Characteristics
 - Feasibility
Bench-Scale Groundwater Study: In Situ

Experimental Approach
- Plastic Bioreactors
- PRB Media: 5 to 10% by Mass
 - Compost
 - Canola Oil-Coated Wood Shavings
 - Cottonseed Meal
 - Granular Activated Carbon
- Influent Concentration: 5 to 8 mg/L
- Flow Rates Similar to Site Groundwater

Bench-Scale Groundwater Study: In Situ

<table>
<thead>
<tr>
<th>Medium</th>
<th>Phosphate</th>
<th>TKN</th>
<th>TOC</th>
<th>Ammonia</th>
<th>Total P</th>
</tr>
</thead>
<tbody>
<tr>
<td>compost</td>
<td>430</td>
<td>23,000</td>
<td>250,000</td>
<td>640</td>
<td>7500</td>
</tr>
<tr>
<td>wood/oil</td>
<td>31</td>
<td>180</td>
<td>690,000</td>
<td>3.40</td>
<td>28 U</td>
</tr>
<tr>
<td>cottonseed meal</td>
<td>42</td>
<td>70,000</td>
<td>500,000</td>
<td>200</td>
<td>10,000</td>
</tr>
<tr>
<td>GAC</td>
<td>15</td>
<td>2,800</td>
<td>970,000</td>
<td>0.69</td>
<td>42</td>
</tr>
<tr>
<td>cottonseed</td>
<td>-</td>
<td>32,000</td>
<td>440,000</td>
<td>20</td>
<td>4,900</td>
</tr>
</tbody>
</table>
Bench-Scale Groundwater Study: In Situ

In Situ Bench-scale Study Results: Perchlorate Concentrations
ISM Pilot-Scale Implementation

- Groundwater Cutoff and Collection Trenches
- Ex situ Biotreatment System
- In situ Groundwater Biotreatment
- Soil Biotreatment
 - Anaerobic Landfarming

Cutoff/Collection Trench Construction

[Map showing trench locations]

Possible Source Area
A-Line Trench
B-Line Trench
C-Line Trench
Unnamed Tributary
Area M
Cutoff/Collection Trench Construction

- A-line Property Line
 Cutoff Trench
 - Extends through
 Weathered Limestone
 Water-bearing Zone
 - 30 Inches Wide
 - Up to 25 Feet Deep
 - Perforated Collection
 Pipe
 - Drainage Aggregate
Cutoff/Collection Trench Construction

Collection System Modification
Bench-Scale Soil Study: Anaerobic Landfarming

- **Experimental Approach**
 - Nutrients: Nitrogen and Phosphorus
 - Carbon Sources: Fructose and Citric Acid
 - Microbes: Acclimated and Indigenous

- **Findings/Results**
 - Concentrations Reduced From **580 mg/kg** to Detection Limits (0.6 to 1.6 Mg/kg) in **28 Days**
Soil Bench-Scale Study
Phase II Results

![Graph showing perchlorate concentration over time for Treatment Cell 1 and Treatment Cell 2, with zero order and first order models.]

Pilot-Scale Soil Study: Anaerobic Landfarming

- Amendments
 - Citric Acid
 - Nitrogen and Phosphorus
 - Soda Ash
- Flood Cell
- Monitor

Bioremediation of Perchlorate
Contamination in Soil and Groundwater
Conclusions

- VOC Biodegradation
- In Situ Treatment System Effectiveness
 - Projected to Last 8 to 15 Years
- Perchlorate Mass Leaving Site Reduced
 - From 60 to 0.5 Pounds Per Month
- In Situ Soil Bioremediation Effective
- Future Applications: Other Onsite Areas and Offsite