Case History:

Removal of Perchlorate from Groundwater at the Longhorn Army Ammunition Plant

Presented at the Sixth In Situ and On-Site Bioremediation Conference

by Bill Guarini
Envirogen, Inc.
609 - 936-9300
Acknowledgements

U.S. Army: Cyril Onewokae
David Tolbert

U.S. Army Corps of Engineers: Jonna Polk
Cliff Murray
Dawn Knight

Complete Environmental Systems
Deerinwater Environmental Systems
Aerojet
U.S. Filter/Envirex
Envirogen’s Engineering Group
Presentation Overview

1. Sources of perchlorate
2. Biological degradation of perchlorate
3. Fluid Bed Reactor
4. Aerojet Full Scale System Success
5. Longhorn Army Ammunition Plant
 - History
 - Problem
 - Full Scale System Success
6. Summary
Sources of Perchlorate

• Fireworks and matches
• Airbag inflators
• Nuclear reactors and electronic tubes
• Lubricating oils
• Tanning and finishing leather
• Mordant for fabrics and dyes
• Electroplating aluminum refining
• Rubber manufacturing
• Paints and enamels
• Fertilizers
Sources of Perchlorate

It has been estimated that 90% of ammonium perchlorate released is as an oxidizer for solid rocket propellant.
Bacterial Metabolism

Requirements:

• Energy Source (organic or inorganic)
• Electron Acceptor (O₂, NO₃, SO₄, CO₂)
• Carbon Source (organic or CO₂)
• Macronutrients (N,P,S)
• Mineral Ions (Ca, K, Mg, Fe, Cu, Zn, Co, et al.)
• Vitamins and/or Amino Acids
Biological Perchlorate Reduction

Terminal Electron Acceptor:

$$\text{ClO}_4^- \rightarrow \text{ClO}_3^- \rightarrow \text{ClO}_2^- \rightarrow \text{O}_2 + \text{Cl}^-$$

(perchlorate) (chlorate) (chlorite)

H$_2$O
Organic Pollutants

Biomass + CO₂

Nutrients (N,P)

H₂O

O₂

Benzene (substrate)
Perchlorate Reduction

Biomass + CO₂

Cl⁻ + O₂ → ClO₄⁻

Nutrients (N,P)

Organic Substrate
(Ethanol, Acetate, Lactate, Molasses, Sucrose)

(H₂O)

(Anoxic Conditions; i.e. Low O₂)
Utilization of Electron Acceptors

- 250

Redox (mV)

+ 800

Groundwater + Substrate

Methanogenesis

Denitrification

CO₂ → CH₄

SO₄²⁻ → S⁻

ClO₄⁻ → Cl⁻

NO₃⁻ → N₂

O₂ → H₂O
Bioreactor System Options for Treatment of Organic Chemicals

![Diagram of bioreactor systems]

FLOWRATE, GPM

mg/l

CONTAMINATED WATER OR WASTEWATER FEED
pH CONTROL
NUTRIENTS
OXYGEN

MEMBRANE BIOLOGICAL REACTOR SYSTEM

TREATED EFFLUENT
FBR Flow Schematic

FLUIDIZED BED REACTOR

EFFLUENT

FEED
(i.e., CONTAMINATED GROUNDWATER)

NUTRIENT(S)

ELECTRON DONOR

RECYCLE

BED HEIGHT CONTROL SYSTEM

INFLUENT
FBR Advantages

• High biomass concentration means long SRT and short HRT

• High volumetric efficiency translates to compact system; installation in a building

• Simplicity of operation minimizes need for operator attention

• Small impact from changing feed conditions, as feed is combined with recycle before entering the reactor
Key Mechanical Components

• Device and method used to distribute influent flow to the reactor

• Device and method used to control the expansion of the fluidized bed due to biofilm growth

• Method to control electron donor dosage rate
Aerojet’s Full Scale Perchlorate Treatment Plant

- 4 Fluidized Bed Reactors available
- Each reactor has a design capacity of
 - 1800 gpm Fluidization Rate
 - 900 gpm Feed Rate
- 4 reactors currently in use with combined feed rate of ~3500 gpm (~875 gpm each)
- Treating ~ five million gallons per day
Aerojet’s Full Scale Perchlorate Treatment Plant

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Influent</th>
<th>Effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved O_2</td>
<td>5.3 ppm</td>
<td><0.5 ppm</td>
</tr>
<tr>
<td>CLO4</td>
<td>~3500 ppb</td>
<td><4.0 ppb</td>
</tr>
<tr>
<td>TCE</td>
<td>1500 ppb</td>
<td>1500 ppb</td>
</tr>
<tr>
<td>NDMA</td>
<td>110 ppt</td>
<td>110 ppt</td>
</tr>
<tr>
<td>Nitrate-N</td>
<td>1.5 ppm</td>
<td><0.11 ppm</td>
</tr>
<tr>
<td>Nitrite-N</td>
<td><0.076 ppm</td>
<td><0.076 ppm</td>
</tr>
<tr>
<td>Sulfate-S</td>
<td>6.0 ppm</td>
<td>6.0 ppm</td>
</tr>
<tr>
<td>Ethanol</td>
<td>NA</td>
<td><1.0 ppm</td>
</tr>
<tr>
<td>pH</td>
<td>~7.5</td>
<td>~7.5</td>
</tr>
</tbody>
</table>
Longhorn Army Ammunition Plant
LHAAP History

<table>
<thead>
<tr>
<th>Year Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1942-1945</td>
<td>LHAAP opened; Monsanto Chemical Company - TNT</td>
</tr>
<tr>
<td>1952-1956</td>
<td>Universal Match Corporation - pyrotechnic ammunition</td>
</tr>
<tr>
<td>1955-1965</td>
<td>Thiokol Corporation - rocket motor facility</td>
</tr>
<tr>
<td>1965</td>
<td>Pyrotechnic and illuminating ammunition re-established</td>
</tr>
<tr>
<td>1965-1997</td>
<td>Multi-functional; INF</td>
</tr>
<tr>
<td>1990</td>
<td>NPL</td>
</tr>
<tr>
<td>1991</td>
<td>Federal Facilities Agreement</td>
</tr>
<tr>
<td>1997</td>
<td>Caretaker Status</td>
</tr>
<tr>
<td>2000</td>
<td>Fish and Wildlife Service Memorandum of Agreement</td>
</tr>
</tbody>
</table>
Bench Scale FBR Glass Reactor
Results of Phase 1 - Sample Characterization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method</th>
<th>Units</th>
<th>Drum #1</th>
<th>Drum #2</th>
<th>Drum #3</th>
<th>Average</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen (O₂)</td>
<td>D.O. Probe</td>
<td>mg/L</td>
<td>4.0</td>
<td>3.5</td>
<td>Not Analyzed</td>
<td>3.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Perchlorate (ClO₄⁻)</td>
<td>EPA 300.0</td>
<td>mg/L</td>
<td>15.1</td>
<td>14.7</td>
<td>14.4</td>
<td>14.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Chlorate (ClO₃⁻)</td>
<td>EPA 300.0</td>
<td>mg/L</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Nitrate-N (NO₃⁻-N)</td>
<td>EPA 300.0</td>
<td>mg/L</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>1.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Nitrite-N (NO₂⁻-N)¹</td>
<td>HACH Method 8507</td>
<td>mg/L</td>
<td>0.016</td>
<td>0.013</td>
<td>0.011</td>
<td>0.013</td>
<td>0.003</td>
</tr>
<tr>
<td>Ortho-phosphate-P (PO₄⁻-P)</td>
<td>EPA 300.0</td>
<td>mg/L</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td>N/A</td>
</tr>
<tr>
<td>Ammonia-N (NH₃-N)</td>
<td>EPA 350.2</td>
<td>mg/L</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td>N/A</td>
</tr>
<tr>
<td>Sulfate (SO₄²⁻)</td>
<td>EPA 300.0</td>
<td>mg/L</td>
<td>290</td>
<td>310</td>
<td>310</td>
<td>303</td>
<td>11.5</td>
</tr>
<tr>
<td>Chemical Oxygen Demand (COD)</td>
<td>EPA 410.4</td>
<td>mg/L</td>
<td>56</td>
<td>21</td>
<td>12</td>
<td>30</td>
<td>23.2</td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>EPA 415.1</td>
<td>mg/L</td>
<td><1</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td>N/A</td>
</tr>
<tr>
<td>Oil & Grease (O&G)</td>
<td>EPA 413.1</td>
<td>mg/L</td>
<td>Less than 10 mg/L for a composite sample</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>EPA 160.2</td>
<td>mg/L</td>
<td>12</td>
<td>14</td>
<td>4</td>
<td>10</td>
<td>5.3</td>
</tr>
<tr>
<td>Volatile Organic Contaminants (VOCs)</td>
<td>SW-846 8260</td>
<td>mg/L</td>
<td>Not Analyzed</td>
<td>Less than 0.10 to 0.05 mg/L for all on 8260 list except for acetone @ 0.18 mg/L</td>
<td>Less than 0.10 to 0.05 mg/L for all on 8260 list</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Priority Pollutant Metals</td>
<td>EPA 200.7 and EPA 245.1 (Hg)</td>
<td>ug/L</td>
<td>Less than PQL for all on 200.7 list (and Hg) except for Ni @ 1.7 ug/L and Zn @ 198 ug/L</td>
<td>Less than PQL for all on 200.7 list (and Hg) except for Ni @ 1.8 ug/L and Zn @ 131 ug/L</td>
<td>Not Analyzed</td>
<td>1.8 for Ni and 165 for Zn</td>
<td>0.1 for Ni and 47.4 for Zn</td>
</tr>
<tr>
<td>Broth Tube Toxicity/Inhibition Test</td>
<td>Internal SOP</td>
<td>N/A</td>
<td>Not Toxic or Inhibitory</td>
<td>Not Toxic or Inhibitory</td>
<td>Not Toxic or Inhibitory</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

¹ EPA Method 300.0 (Ion Chromatography) gave initial results of 330, 340, and 320 mg/L for nitrite-N. The samples were re-run, and the peak was determined to be chloride (Cl⁻) at an average concentration of 710 mg/L. The nitrite-N results were confirmed by an independent laboratory using Method EPA 353.2.
Longhorn Army Ammunition Plant
Bench-Sale Results

Perchlorate Concentration (ug/L)

Date

Influent
Effluent

Low carbon substrate feed

Longhorn Army Ammunition Plant
Full Scale FBR Installation
(Perchlorate Reduction)

• Design Basis
 – 50 gpm
 – One 5 ft. dia. unit
 – Acetic acid as electron donor
 – GAC media
 – Perchlorate up to 22,000 ppb
UPDATE

Longhorn Army Ammunition Depot

ENVIROGEN FBR System Performance

Days Since Inoculation

Perchlorate Concentration (ppb)

- Influent Perchlorate
- Effluent Perchlorate
Summary

• Biological Fluid Bed Reactor successfully treating more than 7.0 million gallon per day of groundwater containing perchlorate
• Consistent effluent perchlorate levels below practical quantitation limits (4 ppb)
• Single FBR treats from 50 to 1,000 gpm
• No flow rate limits with multiple units
• Thank you - Bill Guarini, Envirogen, Inc.
 609 - 936-9300 x 135