

Southeastern European Defense Ministerial Environmental Conference

Introduction

How did ESG come to its know-how relating to environmental and hazardous materials topics?

- · in-service phase of airborne weapon systems
- · in-service phase extends over many years, often decades
 - constantly changes and modifications
 - introduction of new equipments
 - introduction of new POL (petroleum, oils and lubricants) into the supply cycle of the German armed forces
- legale requirements
 - enforce modifications to defence equipment

Introduction

increasing awareness of subjects such as:

- · hazardous materials
- · environmental protection
- · on-the-job safety
- transportation of dangerous goods

requirement for information on hazardous materials which can be evaluated

Problems in the Provision of Information

essential information in computer systems

- not fully available or not available at all
- · scattered and unformated
- · not stored at a central point

problems in identifying hazardous materials
 effort involved in identifying hazardous materials is enormous

ESG dealing with these problems since 1984
 ESG makes computerised systems

- transparent
- formatted

Environmental hazardous material information systems - ESG -

Objectives

important objectives learned from our experience, are:

- acquisition of information from the beginning of the life cycle of defense equipment
 - in a dequate depth
 - formated
- · updating of the data over the entire life cycle
- · centralised data management

Significance of information about hazardous materials

information about hazardous materials are important today with regard to subjects such as:

- · on-the-job saftey
- · transportation of dangerous goods
- protection of the environment
- · reusability of systems and equipment
- disposal

legal situation demands this information

Acquisition of Information in Adequate Depth

acquisition of information of hazardous materials from a present-day point of view

- acquisition of hazardous consumerable and POL
 → mostly properly documented (safety data sheets)
- acquisition of other hazardous materials

 → eg. documented in form of special authorisation

Acquisition of Information in Adequate Depth

- acquisition of information of materials which have not been hazardous materials so far but which have become hazardous as a result of a change in the law
 - eg. asbestos, CFC, PCB, (cadmium)

options of determination of these items

- · acquisition of information relating to
 - material
 - constituents
 - compounds
 - surface treatment

Data Management in Centralised Logistic Information Systems

centralised logistic information systems

- GAF: ILIMS (Integrated Logistic Information and Management System)
- RAF: ISIS (Item of Supply Information System)
- USAF: FLIS (Federal Logistics Information System)

possibility of acquiring and mapping information about

- hazardous materials
- characteristics data of items of supply (eg. material, compounds, surface treatment)

NATO-compatible systems

Codification

- information and data contained in NATO-compatible systems (eg. ILIMS) acquired as part of the codification process
- items of supply which have been introduced into the supply cycle have to be coded
- beginning of the life cycle of defence material
- codification is an excellent opportunity to acquire information required for identifying hazardous materials

Characteristics Data

identification guides

- characteristics data acquired by answering questions, "feature questions"
- · "feature questions" specified in identification guides
- identification guides for screws describing a screw in greater detail
 - item name
 - thread, right-hand/left-hand
 - length
 - type of screw head
 eg. countersunk
- material
- surface treatment
- etc.

Problems with Identification

identification of material which have now become hazardous materials as a result of a change in the law

- not all questions listed in identification guides have to be answered
- → certain details which would be necessary for determining materials which become hazardous are not available
- all feature questions relating specifically these materials have to be answered as part of the codification process

Examples of Characteristics Data for Evaluation

MRC	Requirement Statement	Clear Text Reply
NAME	ITEN NAME	GASKET
AAGR	CROSS-SECTIONAL SHAPE STYLE	F11 METAL AND NONMETALLIC
		MATERIALS
ABKV	OUTSIDE DIAMETER	1.328 INCHES NOMINAL
ABVL	APERTURE DIAMETER	1.000 INCHES NOMINAL
ADVN	CR033-SECTIONAL THICKNESS	0.080 INCHES NOMINAL
MATT	NATERIAL	COPPER OVERALL AND ASBESTOS
STYL	STYLE DESIGNATOR	B1 CIRCULAR
ZZZV	FSC APPLICATION DATA	ENGINE, GASOLINE, RECIPROCATING,
		AIRCRAFT

Examples of Characteristics Data for Evaluation

	Date: 06 Apr 00 w: SCREW,MACHINE	Effective Date: 1 Jan 20 FL	
MRC	Requirement Statement	Clear Text Reply	
NAME	ITEN NAME	SCREW, BACHINE	
AAJD	THREAD CLASS	3A	
AAJF	THREAD DIRECTION	RIGHT-HAND	
ARAA	THREAD LEMOTH	0.460 INCHES MINIMUM	
AASB	FASTENER LENGTH	0.969 INCHES NOMINAL	
AASK	HEAD STYLE	A39 FLAT COUNTERSUNK	
AASL	HEAD DIAMETER	0.447 INCHES NINIPUM AND 0.507 INCHES NAXIPUM	
ABOZ	INTERNAL DRIVE STYLE	B1 CROSS RECESS TYPE 1	
ABYE	NOMINAL THREAD DIAMETER	0.250 INCHES	
CNLP	THREAD QUANTITY PER INCH	28	
COBC	NUMBER OF STREET	125000 POUNDS PER SOUARE INCH	
COFE	HARDNESS RATING	50.0 ROCKWELL C MINIMUM AND	
		56.0 ROCKWELL C MAXIMUM	
CRSQ	COUNTERSIME ANGLE	99.0 DEGREES MINIMUM AND	
		101.0 DEGREES MAXIMUM	
CYAU	SCREW MATERIAL	STEEL	
CYBA	SCREW SURFACE TREATMENT	CADELUE	
THED	THREAD SERIES DESIGNATOR	UNF -	

Examples of Characteristics Data for Evaluation

Tocoyls Date: 06 Apr 00 Effortive Date: 1 Jay 200 Item Name: DAFACITOR FIDED, PAPER DIBLECTFIC FU		
RRC	Regainment Statement	(loar Text Reply
BARE	TIME NAME	LAPACITUR, FIXED, PAPER DIELSCINIL
YYÖ 7	LONT OTTLE	14A 0/0 HTO FACILITIES, TERMINAL(3) OF ONE SUBFACE
LARG	SELIABILITY INLIGATOR	DOT ESTABLISHED
LBHD	OVERALL LENGTH	2.500 INCHES BOMINAL
JEKU	IVERAL: HEIGHT	6.107 INCHES BAXINUS
ADME	CVERALL WIDTH	1.100 INCHES DONINAL
ADA Q	ECOT LENGTH	2.500 INCHES DONINAL
ADACT	EUX MIETH	LINS INCOME DUNING.
ADAU	DOT HEIGHT	4.790 INCIES BOHINAL
AFB ?	CENTER TO CENTER DISTANCE	C. 938 INCHES RINING AND
CRT7	TOLEPANCE PANGE PER SECTION	-10.00/10.00 PERCENT SINGLE
CWAR	CARE MATERIAL	RETAL.
CARE	INSULATION RESISTANCE AT DEPERENCE TERM	15.00.00 REFORMMENT CROKERADS
CUPE	LISSIPATION FACTOR AT REFIRENCE TERM IN PERCENT	1.0000
IEAT.	SPECIAL FEATURES	INCLUDES SUBSTANCES CONTAINING (PCD) (9.5 PPM)
TEST	TE 37 DATA DOCUMENT	(1049-MIL-C-25 SPECIFICATION
TUY	TERRENAL TYPE AND COLMPTTY	2 THEREARE STUD
Bee	rizze NSM <u>H</u> ere NDN	New Zearch

"N-CORE" Codification Tool

codification process is complex regarding the different sequences

- ESG developed a computer program which maps all the codification processes, it's called N-CORE
 - supports all the functions which are expected of a NATO codification bureau
 - supports the user in particular with the identification and codification of items of supply

