

DoD Environmental Planning and Conservation Webinar Series

Assessment of the population genetics of Golden-cheeked Warblers: updates from genome-enabled studies

Please mute your phones

Audio Dial-In: 410-874-6749

Participant Code: 424-868-077#

June 21, 2023

www.denix.osd.mil/nr/

Twitter: @DoDNatRes

Assessment of Population Genetics of Golden-cheeked Warblers

Giri Athrey, Ph.D, Texas A&M University Laurel Moulton, Ph.D, City of Austin Lisa O'Donnell, M.S, City of Austin

Funded through USACE W9126G- 19-2-0014

TEXA UNIV

Setophaga chrysoparia The Golden-cheeked Warbler

Population estimates of GCWA

Management and Recovery Status

Estimated ~30% reduction in warbler breeding habitat between 2001-2011.

Source: Land Change Science @ TX State

Previous genetic study showed decline in genetic diversity

How did habitat changes and population size changes impact genetic diversity?

Historical context needed to answer this question

How steep was the decline?

20-30% decline in measures of genetic diversity (on average)

bottleneck: catastrophic reduction in population

new population

Source: McGraw Hill Education

0.0500

0.0375

FST 0.0250

0.0125

0.0000

Athrey et al 2012

To generate a de novo assembly of the GCWA genome using a combination of short-read and long-read sequencing technologies to be made freely to the public for future studies of GCWA and closely related species.

C. Strickland

What is a genome reference?

- A reference genome is a haploid representation of a species' genome
 Can be constructed from a single individual (more common now), or from a pool
- Can be constructed from a single individual (common earlier)
- Alternate alleles (when known from population data) are assembled alongside reference locus
- Organized into chromosomes (best), or scaffolds (better), or contigs/supercontigs (ok).

Copies of genomic DNA

Sequence reads

"All the News That's Fit to Print" The News Horne New York Finnes. LATE CITY EDITION

VOL. XCIV..No. 31,980. JAPAN SURRENDERS, END OF WAR! **EMPEROR ACCEPTS ALLIED RULE;** M'ARTHUR SUPREME COMMANDER; OUR MANPOWER CURBS VOIDED

Security in the difference of the second sec

HIRING MADE LOCAL Third Fleet Fells 5 Planes Since End ALL CITY LETS GO' PRESIDENT ANNOUNCING SURRENDER OF JAPAN YIELDING UNQUALIFIED, TRUMAN SAYS

ions, Information and the message in the White House. Seated are Admiral William D. Leash, Secretary of Slate James F. Byrnes and former Secretary of State Cordell Rull. Standing (left to right) are Mai, Gen. Fhilip Fleming, head of the Foleral Works Administration; William E. Secretary of the to the other Source Secretary of the Four methy are Mais Gen. Fhilip Fleming, head of the Foleral Works Administration; William E. Secretary terms of the Pour cost of the Nary; Fred Vinson, Secretary of Labor. Annual Secretary Tend Vinson, Secretary Of Labor. Annual Secretary Of Labor. Annual Secretary Secretary Of Labor. Annual Secretary Secretary Of Labor. Annual Secretary Of Labor. Annual Secretary Secretary Of Labor. Annual Secretary Of Labor. Annual Secretary Secretary Of Labor. Annual Secretary Of Labo

Assembled Genome

Assembly from WGS

Perfect Assembly

Typical Assembly

Repetitive regions and or poor sequencing leave gaps Several and a several several several and the second and the second several second several several several seve

* Unknown and perhaps unknowable!

_	-				
 -			-		
-			-		

THE STANDARD BARAGE TO A CONTRACT TO A CONTRACT OF THE STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD ST

Repeats or un-sequenced

GCWA Assembly quality

Ref Free metric	Haslr Hybrid Assembly	Scaffolded	Gapped Scaffolds	
N. Contigs	4719	3862	2450	
Longest Contig	4.95 Mbp	6.283 Mbp	12.6 Mbp	
N50	703 Kbp	957 Kbp	1.518 Mbp	
N/100kpb	0	0.61	414	
Total Length	982.98 Mbp	982.57 Mbp	817.252 Mbp	

Assembly Completeness **Benchmarking Universal Single Copy Orthologs**

BUSCO Assessment Results

Complete (C) and duplicated (D)

%BUSCOs

60 80 100

Perform a genetic assessment of GCWA population genetic diversity, structure, and population size history across the breeding range to inform species action plan and upcoming USFWS status review.

C. Strickland

Rationale

Update work done by Lindsay et al. 2008 and Athrey et al. 2011 and to inform species action plan and upcoming USFWS status review.

Lindsay et al. 2008:

From Athrey et al. 2011:

Fig. 2 Estimates of mean genetic diversity (with SEs) for historical and contemporary populations of *D. chrysoparia*. The hypotheses of no difference in estimates of allelic richness (A_R) and expected heterozygosity (H_{EXP}) were evaluated with a *T*-test ($\alpha = 0.05$). *Symbols above each bar* indicate significant pairwise differences (*P < 0.05; **P < 0.01; ***P < 0.001)

Datum: NAD 1983 UTN Zone 14N

C. Strickland

Row Labels	F	Ν	1 (Grand Total
Bandera		2	25	27
Hatfield Ranch		1	11	12
Love Creek Preserve		1	14	15
🗏 Bexar		1	44	45
Camp Bullis			22	22
Government Canyon S	NA	1	22	23
🗏 Bosque		1	14	15
Meridian State Park		1	14	15
Coryell/Bell		2	21	23
Ft Hood		2	21	23
🗏 Kendall			27	27
Guadalupe River State	Park		27	27
Kinney/Edwards			15	15
Dobbs Run Ranch			3	3
Kickapoo Caverns State	e Park		12	12
🗏 Palo Pinto			16	16
Palo Pinto State Park			16	16
🗏 San Saba			20	20
Colorado Bend State P	ark		20	20
Somervell		2	17	19
Cahopo Ranch		2	5	7
Fossil Rim Wildlife Cent	ter		5	5
Marsh Ranch			7	7
Travis		7	43	50
BCNWR (Victoria)			17	17
BCP - Barton Creek			2	2
BCP - Collins			2	2
BCP - Emma Bike		1	6	7
BCP - Emma Expansion	1		3	3
BCP - Emma Long		1	4	5
BCP - Forest Ridge		2	3	5
BCP - Hamilton		2		2
BCP - Kent Butler		1	2	3
BCP - Reicher Ranch			2	2
BCP - Vista Point			2	2
🗉 Uvalde		5	20	25
Garner State Park		2	13	15
Shield Ranch		3	7	10
Grand Total		20	262	282

- 43 samples had lower template quality/library quality, and were not sequenced.
- Short PE libraries (150bp).
- Generated 12-15x genome coverage
 - Coverage is sufficient for calling heterozygotes and numerous population genetics analyses
 - Analysis of genetic diversity and structure with open source tools.

Sequenced DNA from all samples.

Genome wide nucleotide diversity

π=0.002

π=0.001

π=0.0014

π=0.0011

π=0.005

Contemporary Genetic Diversity

Table 2: Summary of the sample sizes per population, the population-wise inbreeding coefficients (Fi), and the observed heterozygosity (Ho). Genome-wide averages are presented by population, and a final species average is presented.

Population	Sample Size (N)	Avg. F_{IS}	Avg. Ho
Bandera	25	0.097	0.025
Bell/Coryell	23	0.095	0.033
Bexar	42	0.075	0.022
Bosque	15	0.114	0.040
Kendall	25	0.070	0.024
Kinney Edwards	15	0.112	0.041
Palo Pinto	16	0.119	0.034
San Saba	19	0.101	0.035
Somervell	18	0.084	0.030
Travis	15	0.124	0.035
Uvalde/Real	25	0.096	0.025
Total	239	0.099 (Avg.)	0.031 (Avg.)

Population Genetic Structure

	bellcoryell	bexar	bosque	kendall	kinneyedwa	palopinto	sansaba	somervell	travis	uvalde
bandera	0.011533	0.008467	0.01347	0.011498	0.012311	0.018657	0.013071	0.014068	0.013174	0.009
bellcoryell		0.009931	0.013541	0.012485	0.014223	0.019261	0.013647	0.014064	0.014116	0.011
bexar			0.012681	0.009546	0.011795	0.017957	0.011622	0.013032	0.012009	0.008
bosque				0.014256	0.015239	0.019498	0.01474	0.014396	0.015427	0.01
kendall					0.013639	0.019651	0.013336	0.014099	0.014147	0.011
kinneyedwa	ards			Hard Table		0.020535	0.015435	0.015709	0.015215	0.012
palopinto			- mar	and man and			0.019875	0.020342	0.020711	0.018
sansaba		رحر الم						0.01443	0.015119	0.013
somervell			Palo Pinto						0.014837	0.014
travis		Using the R Critic finagery Critic 1 ag 200	dhaal Kap: Bata rokvebad Boequ							0.013
uvalde			Coryell San Saba							
			rands Real Bendera Beaur Utites This Hallspace (Mage 1	between energy to the main related to which we appear						
		 GCWA samples GCWA breeding r County 	ange N 0 37.5 75 Datum: NAD 1	150 225 300 Kilon eter 983 UTN Zone 14N						

Population Genetic Structure

Ordination Plot

Population Genetic Structure

Historical Demography

Historical demographic reconstruction (with PSMC) based on heterozygous loci indicates that GCWA were relatively abundant during the Pleistocene and entering the Holocene (last 10k years).

Current Effective Population Sizes

Table 3: Summary of the estimates of effective population sizes using three different methods in this study. When available, the numbers from the temporal estimates (MLNe) generated in the 2011 study are reported alongside. 95% confidence intervals are shown in parentheses when available.

Population	2011 study	$ N_e $ (Coancestry)	N_{e} (LD)	N_{e} (Het)
Bandera		152 (108-191)	78 (29-103)	5.9
Bell Coryell		140 (73-178)	72 (34-97)	4.8
Bexar	49 (24-212)	254(159-361)	130 (73-161)	6.1
Bosque		82 (41-104)	46 (31-53)	4.3
Kendall		156 (110-181)	80 (54-201)	3.9
Kinney Edwards		92 (76-123)	47 (24-77)	2.17
Palo Pinto		98 (66-134)	51 (19-81)	7.75
San Saba		116 (91-133)	59(41-73)	5.17
Somervell		110 (101-145)	52 (38-89)	4.7
Travis	273 (46-621)	89 (53-99)	49 (23-108)	3.47
Uvalde/Real		110 (93-128)	70 (49-103)	4.8

Genome wide Neutrality Tests

Conclusions

- GCWA shows a genome-wide average nucleotide diversity (π) of 0.0014
- Low levels of heterozygosity in every population surveyed, with a species average of 0.31
- There is a high level of inbreeding within each population, with medium to high levels of inbreeding coefficients
- Bexar and Palo Pinto population show high degree of isolation
 - Bell Coryell is not evenly connected with all populations
- Lack of significant Isolation-by-distance, which can be suppressed by low heterozygosity
- Effective population size estimates show clear evidence for small population sizes and recent bottlenecks
- Overall, lack of genomic evidence supporting a genetic recovery, and increasing isolation of some populations

Funded by USACE W9126G- 19-2-0014

Thanks to these people who help support this work in various ways Dr. Elizabeth Galli-Noble Mr. Chris Harper Ms. Lisa O'Donnell Ms. Zia Burns Mr. Greg Bonnell Mr. Ryan Orndorff TAMU NRI and Texas A&M AgriLife Research Dr. Byron Stone Travis Audubon and TOS Land owners across the state

Thank you to John Chenowith, Cristina Campbell, Jonny Scalise, Colin Strickland, Cindy Sperry, and Josie Kerrigan for help with collecting samples!

